【題目】在Rt△ABC中,∠ACB=90°∠A=30°,點(diǎn)DAB的中點(diǎn),DE⊥BC,垂足為點(diǎn)E,連接CD

1)如圖1,DEBC的數(shù)量關(guān)系是   ;

2)如圖2,若P是線段CB上一動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)BC重合),連接DP,將線段DP繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)60°,得到線段DF,連接BF,請(qǐng)猜想DE、BF、BP三者之間的數(shù)量關(guān)系,并證明你的結(jié)論;

3)若點(diǎn)P是線段CB延長(zhǎng)線上一動(dòng)點(diǎn),按照(2)中的作法,請(qǐng)?jiān)趫D3中補(bǔ)全圖形,并直接寫(xiě)出DE、BF、BP三者之間的數(shù)量關(guān)系.

【答案】解:(1DE=BC。

2)根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠PDF=60°,DP=DF,易得∠CDP=∠BDF,根據(jù)“SAS”可判斷△DCP≌△DBF,則CP=BF,利用CP=BC﹣BPDE=BC可得到BF+BP=DE;

3)補(bǔ)全圖形如圖,DE、BF、BP三者之間的數(shù)量關(guān)系為BF﹣BP=DE。

【解析】試題分析:(1)由∠ACB=90°∠A=30°得到∠B=60°,根據(jù)直角三角形斜邊上中線性質(zhì)得到DB=DC,則可判斷△DCB為等邊三角形,由于DE⊥BC,DE=BC;

2)根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠PDF=60°,DP=DF,易得∠CDP=∠BDF,則可根據(jù)“SAS”可判斷△DCP≌△DBF,則CP=BF,利用CP=BC﹣BPDE=BC可得到BF+BP=DE;

3)與(2)的證明方法一樣得到△DCP≌△DBF得到CP=BF,而CP=BC+BP,則BF﹣BP=BC,所以BF﹣BP=DE

解:(1∵∠ACB=90°,∠A=30°,

∴∠B=60°,

點(diǎn)DAB的中點(diǎn),

∴DB=DC,

∴△DCB為等邊三角形,

∵DE⊥BC

∴DE=BC;

故答案為DE=BC

2BF+BP=DE.理由如下:

線段DP繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)60°,得到線段DF,

∴∠PDF=60°,DP=DF

∠CDB=60°,

∴∠CDB﹣∠PDB=∠PDF﹣∠PDB,

∴∠CDP=∠BDF,

△DCP△DBF

,

∴△DCP≌△DBFSAS),

∴CP=BF,

CP=BC﹣BP,

∴BF+BP=BC,

∵DE=BC

∴BC=DE,

∴BF+BP=DE;

3)如圖,

與(2)一樣可證明△DCP≌△DBF,

∴CP=BF,

CP=BC+BP,

∴BF﹣BP=BC

∴BF﹣BP=DE

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)分別在等邊三角形的邊,上,,,連接交于點(diǎn),連接,以下結(jié)論:①;②;③的面積是面積的2倍;④;一定正確的有( )個(gè).

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在平面直角坐標(biāo)系中,菱形ABOC的頂點(diǎn)O在坐標(biāo)原點(diǎn),BOx軸的負(fù)半軸上,∠BOC=60°,頂點(diǎn)C的坐標(biāo)為m),反比例函數(shù)的圖像與菱形對(duì)角線AO交于D點(diǎn)連接BD,當(dāng)BDx軸時(shí),k的值是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】射線QN與等邊ABC的兩邊AB,BC分別交于點(diǎn)M,N,且ACQN,AM=MB=2cm,QM=4cm.動(dòng)點(diǎn)P從點(diǎn)Q出發(fā),沿射線QN以每秒1cm的速度向右移動(dòng),經(jīng)過(guò)t秒,以點(diǎn)P為圓心,cm為半徑的圓與ABC的邊相切(切點(diǎn)在邊上),請(qǐng)寫(xiě)出t可取的一切值 (單位:秒)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①②,A是半徑為12cm的☉O上的定點(diǎn),動(dòng)點(diǎn)PA出發(fā),2π(cm/s)的速度沿圓周逆時(shí)針運(yùn)動(dòng),當(dāng)點(diǎn)P回到A時(shí)立即停止運(yùn)動(dòng).

(1)如圖①,點(diǎn)BOA延長(zhǎng)線上一點(diǎn),AB=OA,當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí)間為2s時(shí),試證明直線BP是☉O的切線.

(2)如圖②,當(dāng)∠POA=90°時(shí),求點(diǎn)P的運(yùn)動(dòng)時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩個(gè)工程隊(duì)共同完成一項(xiàng)工程,乙隊(duì)先單獨(dú)做1天后,再由兩隊(duì)合作2天就完成了全部工程.已知甲隊(duì)單獨(dú)完成工程所需的天數(shù)是乙隊(duì)單獨(dú)完成所需天數(shù)的,求甲、乙兩隊(duì)單獨(dú)完成各需多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)O(0,0),A(0,1)是正方形的兩個(gè)頂點(diǎn),以對(duì)角線為邊作正方形,再以正方形的對(duì)角線作正方形,…,依此規(guī)律,則點(diǎn)的坐標(biāo)是( )

A. (-8,0) B. (0,8)

C. (0,8 D. (0,16)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C=90°, AD∠BAC的平分線,OAB上一點(diǎn), OA為半徑的⊙O經(jīng)過(guò)點(diǎn)D

1)求證:BC⊙O切線;

2)若BD=5,DC=3,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商家銷(xiāo)售一款商品,進(jìn)價(jià)每件80元,售價(jià)每件145元,每天銷(xiāo)售40件,每銷(xiāo)售一件需支付給商場(chǎng)管理費(fèi)5元,未來(lái)一個(gè)月30天計(jì)算,這款商品將開(kāi)展每天降價(jià)1的促銷(xiāo)活動(dòng),即從第一天開(kāi)始每天的單價(jià)均比前一天降低1元,通過(guò)市場(chǎng)調(diào)查發(fā)現(xiàn),該商品單價(jià)每降1元,每天銷(xiāo)售量增加2件,設(shè)第xx為整數(shù)的銷(xiāo)售量為y件.

直接寫(xiě)出yx的函數(shù)關(guān)系式;

設(shè)第x天的利潤(rùn)為w元,試求出wx之間的函數(shù)關(guān)系式,并求出哪一天的利潤(rùn)最大?最大利潤(rùn)是多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案