【題目】某高中學校為高一新生設計的學生板凳的正面視圖如圖所示,其中BA=CD,BC=20cm,BC、EF平行于地面AD且到地面AD的距離分別為40cm、8cm.為使板凳兩腿底端A、D之間的距離為50cm,那么橫梁EF應為多長?(材質及其厚度等暫忽略不計).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的弦,過點O作OC⊥OA,OC交于AB于P,且CP=CB.
(1)求證:BC是⊙O的切線;
(2)已知∠BAO=25°,點Q是弧AmB上的一點.
①求∠AQB的度數(shù);
②若OA=18,求弧AmB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(發(fā)現(xiàn))如圖,點E,F分別在正方形ABCD的邊BC,CD上,連接EF.因為AB=AD,所以把ΔABE繞A逆時針旋轉90°至ΔADG,可使AB與AD重合.因為∠CDA=∠B=90°,所以∠FDG=180°,所以F、D、G共線.
如果__________(填一個條件),可得ΔAEF≌ΔAGF.經(jīng)過進一步研究我們可以發(fā)現(xiàn):當BE,EF,FD滿足__________時,∠EAF=45°.
(應用)
如圖,在矩形ABCD中,AB=6,AD=m,點E在邊BC上,且BE=2.
(1)若m=8,點F在邊DC上,且∠EAF=45°(如圖),求DF的長;
(2)若點F在邊DC上,且∠EAF=45°,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是等腰直角三角形,∠ACB=90°,點E、F分別是邊BC、AC的中點,P是AB上一點,以PF為一直角邊作等腰直角三角形PFQ,且∠FPQ=90°,若AB=10,PB=1,則QE的值為( 。
A. 3 B. 3 C. 4 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司推出一款產(chǎn)品,經(jīng)市場調查發(fā)現(xiàn),該產(chǎn)品的日銷售量y(個)與銷售單價x(元)之間滿足一次函數(shù)關系.關于銷售單價,日銷售量,日銷售利潤的幾組對應值如下表:
銷售單價x(元) | 85 | 95 | 105 | 115 |
日銷售量y(個) | 175 | 125 | 75 | m |
日銷售利潤w(元) | 875 | 1875 | 1875 | 875 |
(注:日銷售利潤=日銷售量×(銷售單價﹣成本單價))
(1)求y關于x的函數(shù)解析式(不要求寫出x的取值范圍)及m的值;
(2)根據(jù)以上信息,填空:
該產(chǎn)品的成本單價是 元,當銷售單價x= 元時,日銷售利潤w最大,最大值是 元;
(3)公司計劃開展科技創(chuàng)新,以降低該產(chǎn)品的成本,預計在今后的銷售中,日銷售量與銷售單價仍存在(1)中的關系.若想實現(xiàn)銷售單價為90元時,日銷售利潤不低于3750元的銷售目標,該產(chǎn)品的成本單價應不超過多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是直徑,于點,連接交于點,過點作的切線交于點,連接交于點
(1)求證:
(2)連接并延長,交于點,填空:
①當的度數(shù)為_________時,四邊形為菱形;
②當的度數(shù)為__________時,四邊形為正方形;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某電視臺在它的娛樂性節(jié)目中每期抽出兩名場外幸運觀眾,有一期甲、乙兩人被抽為場外幸運觀眾,他們獲得了一次抽獎的機會,在如圖所示的翻獎牌的正面4個數(shù)字中任選一個,選中后翻開,可以得到該數(shù)字反面的獎品,第一個人選中的數(shù)字第二個人不能再選擇了.
(1)如果甲先抽獎,那么甲獲得“手機”的概率是多少?
(2)小亮同學說:甲先抽獎,乙后抽獎,甲、乙兩人獲得“手機”的概率不同,且甲獲得“手機”的概率更大些.你同意小亮同學的說法嗎?為什么?請用列表或畫樹狀圖分析.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)
如圖①,矩形的對角線交于點,且,點為線段上任意一點,以為邊作等邊三角形,連接,則與之間的數(shù)量關系是 ;
(2)類比延伸
如圖②,在正方形中,點為邊上任意一點,以為邊作正方形,為正方形的中心,連接,直接寫出與的數(shù)量關系為 ;
(3)拓展遷移
如圖③,在菱形中,,點為邊上一點,以為對角線作菱形,滿足,連接,猜想與的數(shù)量關系,并證明你的結論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com