多項式-b2+a2分解因式后正確的是(  )
分析:首先將原式整理為a2-b2,直接利用平方差公式分解因式即可.
解答:解:-b2+a2,
=a2-b2,
=(a+b)(a-b).
故選:A.
點評:此題主要考查了利用平方差公式分解因式,熟記平方差公式結(jié)構(gòu)是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

15、閱讀下列文字與例題
將一個多項式分組后,可提公因式或運用公式繼續(xù)分解的方法是分組分解法.
例如:(1)am+an+bm+bn=(am+bm)+(an+bn)
=m(a+b)+n(a+b)
=(a+b)(m+n)
(2)x2-y2-2y-1=x2-(y2+2y+1)
=x2-(y+1)2
=(x+y+1)(x-y-1)
試用上述方法分解因式a2+2ab+ac+bc+b2=
(a+b)(a+b+c)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•鹽都區(qū)一模)問題提出
我們在分析解決某些數(shù)學問題時,經(jīng)常要比較兩個數(shù)或代數(shù)式的大小,而解決問題的策略一般要進行一定的轉(zhuǎn)化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過作差、變形,并利用差的符號確定他們的大小,即要比較代數(shù)式M、N的大小,只要作出它們的差M-N,若M-N>0,則M>N;若M-N=0,則M=N;若M-N<0,則M<N.
問題解決
如圖1,把邊長為a+b(a≠b)的大正方形分割成兩個邊長分別是a、b的小正方形及兩個矩形,試比較兩個小正方形面積之和M與兩個矩形面積之和N的大。
解:由圖可知:M=a2+b2,N=2ab.
∴M-N=a2+b2-2ab=(a-b)2
∵a≠b,∴(a-b)2>0.
∴M-N>0.
∴M>N.
類比應用
(1)已知:多項式M=2a2-a+1,N=a2-2a.試比較M與N的大。
(2)已知:如圖2,銳角△ABC (其中BC為a,AC為b,AB為c)三邊滿足a<b<c,現(xiàn)將△ABC 補成長方形,使得△ABC的兩個頂
點為長方形的兩個端點,第三個頂點落在長方形的這一邊的對邊上.
①這樣的長方形可以畫
3
3
個;
②所畫的長方形中哪個周長最。繛槭裁?
拓展延伸
已知:如圖3,銳角△ABC(其中BC為a,AC為b,AB為c)三邊滿足a<b<c,畫其BC邊上的內(nèi)接正方形EFGH,使E、F兩點在邊BC上,G、H分別在邊AC、AB上,同樣還可畫AC、AB邊上的內(nèi)接正方形,問哪條邊上的內(nèi)接正方形面積最大?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

閱讀下列文字與例題:將一個多項式分組后,可提取公因式或運用公式繼續(xù)分解的方法是分組分解法.
例如:(1)am+an+bm+bn=(am+bm)+(an+bn)
=m(a+b)+n(a+b)
=(a+b)(m+n)
(2)x2-y2-2y-1=x2-(y2+2y+1)
=x2-(y+1)2
=(x+y+1)(x-y-1)
參考上面的方法分解因式a2+2ab+ac+bc+b2=
(a+b+c)(a+b)
(a+b+c)(a+b)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

小剛同學動手剪了如圖①所示的正方形與長方形紙片若干張.
觀察與操作:
(1)他拼成如圖②所示的正方形,根據(jù)四個小紙片的面積之和等于大正方形的面積,得到:a2+2ab+b2=(a+b)2,驗證了完全平方公式;即:多項式 a2+2ab+b2 分解因式后,其結(jié)果表示正方形的長(a+b)與寬(a+b)兩個整式的積.
(2)當他拼成如圖③所示的矩形,由面積相等又得到:a2+3ab+2b2=(a+2b)(a+b),即:多項式 a2+3ab+2b2 分解因式后,其結(jié)果表示矩形的長(a+2b)與寬(a+b)兩個整式的積.
問題解決:
(1)請你依照小剛的方法,利用拼圖分解因式:a2+4ab+3b2.(畫圖說明,并寫出其結(jié)果)
(2)試猜想面積是2a2+5ab+3b2的矩形,其長與寬分別是多少?(畫圖說明,并寫出其結(jié)果)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

對下列多項式進行因式分
(1)-9x2y+3xyz;
(2)x(y-z)-y(z-y);
(3)4a2b2-(a2+b22;
(4)-a2b2+2abc2-c4

查看答案和解析>>

同步練習冊答案