【題目】如圖,的直徑,的弦,,的延長線相交于點,過點的切線交于點

1)求證:

2)若,求線段的長.

【答案】1)證明見解析;(2

【解析】

1)連接OB,如圖,根據(jù)圓周角定理得到∠ABD=90°,再根據(jù)切線的性質(zhì)得到∠OBC=90°,然后利用等量代換進行證明;

2)證明AOP∽△ABD,然后利用相似比求BP的長.

1)證明:連接OB,如圖,

AD⊙O的直徑,

∴∠ABD=90°

∴∠A+∠ADB=90°,

∵BC為切線,
∴OB⊥BC,

∴∠OBC=90°

∴∠OBA+∠CBP=90°,

OA=OB,

∴∠A=∠OBA

∴∠CBP=∠ADB;

2)解:∵OP⊥AD,

∴∠POA=90°

∴∠P+∠A=90°,

∴∠P=∠D,

∴△AOP∽△ABD

,即,

∴BP=7

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1所示的是寶雞市文化景觀標志“天下第一燈”,它由國際不銹鋼板整體鍛造,表面涂有仿古金色漆,以仿青銅紋飾雕刻的柱體四盞燈分層布置.一天上午,數(shù)學興趣小組的同學們帶著測量工具來測量“天下第一燈”的高度,由于有圍欄保護,他們無法到達燈的底部他們制定了一種測量方案,圖2所示的是他們測量方案的示意圖,先在周圍的廣場上選擇一點并在點處安裝了測量器在點處測得該燈的頂點P的仰角為;再在的延長線上確定一點使米,在點處測得該燈的頂點的仰角為.若測量過程中測量器的高度始終為米,求“天下第一燈”的高度.,最后結果取整數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BC是路邊坡角為30°,長為10米的一道斜坡,在坡頂燈桿CD的頂端D處有一探射燈,射出的邊緣光線DADB與水平路面AB所成的夾角∠DAN和∠DBN分別是37°60°(圖中的點A、B、C、D、M、N均在同一平面內(nèi),CMAN).

(1)求燈桿CD的高度;

(2)求AB的長度(結果精確到0.1米).(參考數(shù)據(jù):=1.73.sin37°≈060,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ABAC,⊙O分別切ABM,BCN,連接BO、CO,BOCO

1)求證:AC是⊙O的切線;

2)連接MC,若,求sinB的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,矩形OABC的頂點A(﹣6,0),C(0,2).將矩形OABC繞點O順時針方向旋轉(zhuǎn),使點A恰好落在OB上的點A1處,則點B的對應點B1的坐標為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)yax2+bx+c的圖象過點A1,2),B3,2),C5,7).若點M(﹣2,y1),N(﹣1,y2),K8,y3)也在二次函數(shù)yax2+bx+c的圖象上,則y1y2,y3從小到大的關系是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ABAC,∠BAC90°,直角∠EPF的頂點PBC的中點,兩邊PEPF分別交AB,AC于點E,F,現(xiàn)給出以下四個結論:(1AECF;(2EPF是等腰直角三角形;(3S四邊形AEPFSABC;(4)當∠EPFABC內(nèi)繞頂點P旋轉(zhuǎn)時始終有EFAP.(點E不與A、B重合),上述結論中是正確的結論的概率是( 。

A.1B.3C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB兩點在反比例函數(shù)k0,x0)的圖象上,ACy軸于點C,BDx軸于點D,點A的橫坐標為a,點B的橫坐標為b,且ab

1)若△AOC的面積為4,求k值;

2)若a1,bk,當AOAB時,試說明△AOB是等邊三角形;

3)若OAOB,證明:OCOD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在平行四邊形ABCD中,AEBC,垂足為E,CE=AB,點FCE的中點,點G在線段CD上,聯(lián)結DF,交AG于點M,交EG于點N,且∠DFC=EGC

1)求證:CG=DG;

2)求證:

查看答案和解析>>

同步練習冊答案