已知拋物線y=數(shù)學(xué)公式x2-4x+7與y=數(shù)學(xué)公式x交于A、B兩點(diǎn)(A在B點(diǎn)左側(cè)).
(1)求A、B兩點(diǎn)坐標(biāo);
(2)求拋物線頂點(diǎn)C的坐標(biāo),并求△ABC面積.

解:(1)由題意得:
解得: 或
∴A(2,1),B(7,);

(2)∵y=x2-4x+7=
∴頂點(diǎn)坐標(biāo)為:C(4,-1)
過C作CD∥x軸交直線于D
∵y=x
令y=-1得y=x=-1,
解得:x=-2
∴CD=6                                       
∴S△ABC=S△BCD-S△ACD
=-×6×(1+1)=7.5
分析:(1)將兩個(gè)函數(shù)關(guān)系式聯(lián)立,組成方程組求得方程組的解即可確定兩交點(diǎn)的坐標(biāo);
(2)配方后確定頂點(diǎn)坐標(biāo),然后過C作CD∥x軸交直線y=x于D,利用S△ABC=S△BCD-S△ACD求解即可.
點(diǎn)評(píng):本題考查了二次函數(shù)的性質(zhì),求兩個(gè)函數(shù)的交點(diǎn)坐標(biāo)時(shí)可以聯(lián)立組成方程組求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=x2-8x+c的頂點(diǎn)在x軸上,則c等于( 。
A、4B、8C、-4D、16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=x2+(1-2a)x+a2(a≠0)與x軸交于兩點(diǎn)A(x1,0)、B(x2,0)(x1≠x2).
(1)求a的取值范圍,并證明A、B兩點(diǎn)都在原點(diǎn)O的左側(cè);
(2)若拋物線與y軸交于點(diǎn)C,且OA+OB=OC-2,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=-x2+bx+c與x軸負(fù)半軸交于點(diǎn)A,與y軸正半軸交于點(diǎn)B,且OA=OB.
精英家教網(wǎng)(1)求b+c的值;
(2)若點(diǎn)C在拋物線上,且四邊形OABC是平行四邊形,試求拋物線的解析式;
(3)在(2)的條件下,作∠OBC的角平分線,與拋物線交于點(diǎn)P,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•虹口區(qū)一模)如圖,在平面直角坐標(biāo)系xOy中,已知拋物線y=x2+bx+c經(jīng)過A(0,3),B(1,0)兩點(diǎn),頂點(diǎn)為M.
(1)求b、c的值;
(2)將△OAB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°后,點(diǎn)A落到點(diǎn)C的位置,該拋物線沿y軸上下平移后經(jīng)過點(diǎn)C,求平移后所得拋物線的表達(dá)式;
(3)設(shè)(2)中平移后所得的拋物線與y軸的交點(diǎn)為A1,頂點(diǎn)為M1,若點(diǎn)P在平移后的拋物線上,且滿足△PMM1的面積是△PAA1面積的3倍,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•黔南州)已知拋物線y=x2-x-1與x軸的交點(diǎn)為(m,0),則代數(shù)式m2-m+2011的值為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案