【題目】如圖,在□ABCD 中,E、F為對角線AC上的兩點,且AE=CF

1)求證:四邊形DEBF是平行四邊形;

2)如果DE=3,EF=4DF=5,求EB、DF兩平行線之間的距離.

【答案】(1)詳見解析;(2)2.4.

【解析】

1)根據(jù)平行四邊形的性質(zhì)可得AD=BC,ADBC,繼而可得∠DAE=BCF,然后即可利用SAS證明△ADF≌△CBE,進一步即可證明DF=EBDFEB,即可證得結(jié)論;

2)先根據(jù)勾股定理的逆定理得出DEEF,然后根據(jù)三角形的面積即可求出結(jié)果.

1)證明:∵四邊形ABCD是平行四邊形,

AD=BC,ADBC,∴∠DAE=BCF,

AE=CF,∴AF=CE,

∴△ADF≌△CBE(SAS),

DF=EB,∠DFA=BEC,

DFEB

∴四邊形DEBF是平行四邊形;

2)解:∵,

,∴DEEF

過點EEGDFG,如圖,則,即3×4=EG×5,∴EG=2.4

EBDF兩平行線之間的距離為2.4

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=ax2+bx的頂點M(,3)關于x軸的對稱點為B,點A為拋物線與x軸的一個交點,點A關于原點O的對稱點為A′;已知C為A′B的中點,P為拋物線上一動點,作CDx軸,PEx軸,垂足分別為D,E.

(1)求點A的坐標及拋物線的解析式;

(2)當0<x<2時,是否存在點P使以點C,D,P,E為頂點的四邊形是平行四邊形?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著信息技術的迅猛發(fā)展,人們?nèi)ド虉鲑徫锏闹Ц斗绞礁佣鄻、便捷,在一次購物中,張華和李紅都想從微信、支付寶銀行卡、現(xiàn)金四種支付方式中選一種方式進行支付.

(1)張華用微信支付的概率是______

(2)請用畫樹狀圖或列表法求出兩人恰好選擇同一種支付方式的概率.(其中微信、支付寶、銀行卡、現(xiàn)金分別用字母“A”“B”“C”“D”代替)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知矩形ABCD中,E是AD邊上的一個動點,點F,G,H分別是BC,BE,CE的中點.

(1)求證:△BGF≌△FHC;

(2)設AD=a,當四邊形EGFH是正方形時,求矩形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】附加題:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2

的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,要在木里縣某林場東西方向的兩地之間修一條公路MN,已知點C周圍200 m范圍內(nèi)為原始森林保護區(qū),MN上的點A處測得CA的北偏東45°方向上,A向東走600 m到達B,測得C在點B的北偏西60°方向上.

1MN是否穿過原始森林保護區(qū)?為什么?(參考數(shù)據(jù): ≈1.732)

2若修路工程順利進行,要使修路工程比原計劃提前5天完成,需將原定的工作效率提高25%,則原計劃完成這項工程需要多少天?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校想了解學生每周的課外閱讀時間情況,隨機調(diào)查了部分學生,對學生每周的課外閱讀時間x單位:小時進行分組整理,并繪制了如圖所示的不完整的頻數(shù)分別直方圖和扇形統(tǒng)計圖:

根據(jù)圖中提供的信息,解答下列問題:

1補全頻數(shù)分布直方圖

2求扇形統(tǒng)計圖中m的值和E組對應的圓心角度數(shù)

3請估計該校3000名學生中每周的課外閱讀時間不小于6小時的人數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】每到春夏交替時節(jié),雄性楊樹會以漫天飛絮的方式來傳播下一代,漫天飛舞的楊絮易引發(fā)皮膚病、呼吸道疾病等,給人們造成困擾.為了解市民對治理楊絮方法的贊同情況,某課題小組隨機調(diào)查了部分市民(問卷調(diào)查表如圖所示),并根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計圖.

根據(jù)以上統(tǒng)計圖,解答下列問題:

1)本次接受調(diào)查的市民公有__________人;

2)請補全條形統(tǒng)計圖;

3)扇形統(tǒng)計圖中請求出扇形的圓心角度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一拱形隧道的輪廓是拋物線如圖,拱高,跨度

建立適當?shù)闹苯亲鴺讼,求拱形隧道的拋物線關系式;

拱形隧道下地平面是雙向行車道(正中間是一條寬的隔離帶),其中的一條行車道能否并排行駛寬,高的三輛汽車(汽車間的間隔忽略不計)?請說說你的理由.

查看答案和解析>>

同步練習冊答案