某汽車制造公司計(jì)劃生產(chǎn)A、B、C三種型號(hào)的汽車共80輛.并且公司在設(shè)計(jì)上要求,A、C兩種型號(hào)之間按如圖所示的函數(shù)關(guān)系生產(chǎn).該公司投入資金不少于1212萬(wàn)元,但不超過122
4萬(wàn)元,且所有資金全部用于生產(chǎn)這三種型號(hào)的汽車,三種型號(hào)的汽車生產(chǎn)成本和售價(jià)如下表:
|
A |
B |
C |
成本(萬(wàn)元/輛) |
12 |
15 |
18 |
售價(jià)(萬(wàn)元/輛) |
14 |
18 |
22 |
設(shè)A種型號(hào)的汽車生產(chǎn)x輛;
(1)設(shè)C種型號(hào)的汽車生產(chǎn)y輛,求出y與x的函數(shù)關(guān)系式;
(2)該公司對(duì)這三種型號(hào)汽車有哪幾種生產(chǎn)方案?
(3)設(shè)該公司賣車獲得的利潤(rùn)W萬(wàn)元,求公司如何生產(chǎn)獲得利潤(rùn)最大?
(4)根據(jù)市場(chǎng)調(diào)查,每輛A、B型號(hào)汽車的售價(jià)不會(huì)改變,每輛C型號(hào)汽車在不虧本的情況下售價(jià)將會(huì)降價(jià)a萬(wàn)元(a>0),且所生產(chǎn)的三種型號(hào)汽車可全部售出,該公司又將如何生產(chǎn)獲得利潤(rùn)最大?(注:利潤(rùn)=售價(jià)-成本)