已知:如圖,△ABC中,CA=CB,點(diǎn)D為AC的中點(diǎn),以AD為直徑的⊙O切BC于點(diǎn)E,AD=2.
(1)求BE的長(zhǎng);
(2)過(guò)點(diǎn)D作DF∥BC交⊙O于點(diǎn)F,求DF的長(zhǎng).

【答案】分析:(1)根據(jù)AD=2,AD=CD可以得到CD,CA的長(zhǎng),根據(jù)切割線(xiàn)定理得到CE2=CD•CA就可以求出CE的長(zhǎng);
(2)過(guò)點(diǎn)OG⊥DF與G,則DG=FD,可以證明△OGD∽△OEC,然后利用相似三角形的對(duì)應(yīng)邊成比例可以求出DG,也就可以求出DF.
解答:解:(1)如圖,連接OE交FD于點(diǎn)G,
∵點(diǎn)D為AC的中點(diǎn),AD=2
∴AC=4
∴BC=AC=4.
∵BC切⊙O于E,
∴OE⊥BC,

∴BE=4-2;

(2)∵DF∥BC,
∴△OGD∽△OEC,

,
,
∴OE⊥BC,
∴OE⊥FG,

點(diǎn)評(píng):本題主要考查了切割線(xiàn)定理,垂徑定理,以及相似三角形的性質(zhì),相似三角形的對(duì)應(yīng)邊成比例等知識(shí)來(lái)解題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、已知,如圖,△ABC中,∠BAC=90°,AD⊥BC于點(diǎn)D,BE平分∠ABC,交AD于點(diǎn)M,AN平分∠DAC,交BC于點(diǎn)N.
求證:四邊形AMNE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,∠ABC、∠ACB 的平分線(xiàn)相交于點(diǎn)F,過(guò)F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,△ABC是等邊三角形,點(diǎn)D在AB上,點(diǎn)E在AC的延長(zhǎng)線(xiàn)上,且BD=CE,DE交BC于F,求證:BF=CF+CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,△ABC中,AB=AC=10,BC=16,點(diǎn)D在BC上,DA⊥CA于A.
求:BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,△ABC中,AD⊥BC,BD=DE,點(diǎn)E在AC的垂直平分線(xiàn)上.
(1)請(qǐng)問(wèn):AB、BD、DC有何數(shù)量關(guān)系?并說(shuō)明理由.
(2)如果∠B=60°,請(qǐng)問(wèn)BD和DC有何數(shù)量關(guān)系?并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案