【題目】如圖,∠AOB=30°,OP平分∠AOB,PD⊥OB于D,PC∥OB交OA于C,若PC=6,則PD= .
【答案】3.
【解析】
試題分析:過(guò)點(diǎn)P作PE⊥OA于E,根據(jù)角平分線定義可得∠AOP=∠BOP=15°,再由兩直線平行,內(nèi)錯(cuò)角相等可得∠BOP=∠OPC=15°,然后利用三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和求出∠PCE=30°,再根據(jù)直角三角形30°角所對(duì)的直角邊等于斜邊的一半解答.
解:如圖,過(guò)點(diǎn)P作PE⊥OA于E,
∵∠AOB=30°,OP平分∠AOB,
∴∠AOP=∠BOP=15°.
∵PC∥OB,
∴∠BOP=∠OPC=15°,
∴∠PCE=∠AOP+∠OPC=15°+15°=30°,
又∵PC=6,
∴PE=PC=3,
∵∠AOP=∠BOP,PD⊥OB于D,PE⊥OA于E,
∴PD=PE=3,
故答案為3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將拋物線y=﹣2x2向右平移1個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度所得的拋物線解析式為( )
A.y=﹣2(x+1)2
B.y=﹣2(x+1)2+2
C.y=﹣2(x﹣1)2+2
D.y=﹣2(x﹣1)2+1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D、E、F分別在邊AB、BC、CA上,且DE∥CA,DF∥BA.下列四種說(shuō)法:
①四邊形AEDF是平行四邊形;
②如果∠BAC=90°,那么四邊形AEDF是矩形;
③如果AD平分∠BAC,那么四邊形AEDF是菱形;
④如果AD⊥BC且AB=AC,那么四邊形AEDF是菱形.
其中,正確的有 (只填寫序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在下面的括號(hào)內(nèi),填上推理的根據(jù):如圖,已知AB∥CD,BE平分∠ABC,CF平分∠BCD,求證:BE∥CF.
證明:∵AB∥CD,(已知)
∴∠ABC=∠BCD.( )
∵BE平分∠ABC,CF平分∠BCD,(已知)
∴∠1=∠ ,∠2=∠ ( )
∴∠1=∠2.
∴BE∥CF.( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的有( )
①對(duì)頂角相等;②相等的角是對(duì)頂角;③若兩個(gè)角不相等,則這兩個(gè)角一定不是對(duì)頂角;④若兩個(gè)角不是對(duì)頂角,則這兩個(gè)角不相等
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問題:如圖1,在四邊形ABCD中,點(diǎn)P為AB上一點(diǎn),∠DPC=∠A=∠B=90°.求證:ADBC=APBP.
(2)探究:如圖2,在四邊形ABCD中,點(diǎn)P為AB上一點(diǎn),當(dāng)∠DPC=∠A=∠B=θ時(shí),上述結(jié)論是否依然成立?說(shuō)明理由.
(3)應(yīng)用:請(qǐng)利用(1)(2)獲得的經(jīng)驗(yàn)解決問題:
如圖3,在△ABD中,AB=12,AD=BD=10.點(diǎn)P以每秒1個(gè)單位長(zhǎng)度的速度,由點(diǎn)A出發(fā),沿邊AB向點(diǎn)B運(yùn)動(dòng),且滿足∠DPC=∠A.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(秒),當(dāng)以D為圓心,以DC為半徑的圓與AB相切,求t的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com