【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c的頂點(diǎn)坐標(biāo)為(2,9),與y軸交于點(diǎn)A(0,5),與x軸交于點(diǎn)E、B.

(1)求二次函數(shù)y=ax2+bx+c的表達(dá)式;

(2)過點(diǎn)AAC平行于x軸,交拋物線于點(diǎn)C,點(diǎn)P為拋物線上的一點(diǎn)(點(diǎn)PAC上方),作PD平行于y軸交AB于點(diǎn)D,問當(dāng)點(diǎn)P在何位置時(shí),四邊形APCD的面積最大?并求出最大面積;

(3)若點(diǎn)M在拋物線上,點(diǎn)N在其對(duì)稱軸上,使得以A、E、N、M為頂點(diǎn)的四邊形是平行四邊形,且AE為其一邊,求點(diǎn)M、N的坐標(biāo).

【答案】(1)y=﹣x2+4x+5;(2)點(diǎn)P(,)時(shí),S四邊形APCD最大=;(3)當(dāng)M點(diǎn)的坐標(biāo)為(1,8)時(shí),N點(diǎn)坐標(biāo)為(2,13),當(dāng)M點(diǎn)的坐標(biāo)為(3,8)時(shí),N點(diǎn)坐標(biāo)為(2,3).

【解析】

試題(1)設(shè)出拋物線解析式,用待定系數(shù)法求解即可;(2)先求出直線AB解析式,設(shè)出點(diǎn)P坐標(biāo)(x,﹣x2+4x+5),建立函數(shù)關(guān)系式S四邊形APCD=﹣2x2+10x,根據(jù)二次函數(shù)求出極值;(3)先判斷出△HMN≌△AOE,求出M點(diǎn)的橫坐標(biāo),從而求出點(diǎn)MN的坐標(biāo).

試題解析:(1)設(shè)拋物線解析式為y=a+9,拋物線與y軸交于點(diǎn)A05), ∴4a+9=5

∴a=﹣1, y=﹣+9=-+4x+5,

2)當(dāng)y=0時(shí),-+4x+5=0,∴x1=﹣1,x2=5,∴E﹣1,0),B5,0),

設(shè)直線AB的解析式為y=mx+n,∵A0,5),B50),∴m=﹣1,n=5

直線AB的解析式為y=﹣x+5;設(shè)Px,+4x+5), ∴Dx﹣x+5),

∴PD=-+4x+5+x﹣5=-+5x∵AC=4, ∴S四邊形APCD=×AC×PD=2-+5x=-2+10x

當(dāng)x=時(shí), ∴S四邊形APCD最大=,

3)如圖,

MMH垂直于對(duì)稱軸,垂足為H∵M(jìn)N∥AE,MN=AE∴△HMN≌△AOE,∴HM=OE=1

∴M點(diǎn)的橫坐標(biāo)為x=3x=1,當(dāng)x=1時(shí),M點(diǎn)縱坐標(biāo)為8,當(dāng)x=3時(shí),M點(diǎn)縱坐標(biāo)為8,

∴M點(diǎn)的坐標(biāo)為M118)或M23,8),∵A0,5),E/span>﹣1,0), 直線AE解析式為y=5x+5,

∵M(jìn)N∥AE,∴MN的解析式為y=5x+b,點(diǎn)N在拋物線對(duì)稱軸x=2上,∴N2,10+b),

∵AE2=OA2+0E2=26 ∵M(jìn)N=AE ∴MN2=AE2∴MN2=2﹣12+[8﹣10+b]2=1+b+22

∵M(jìn)點(diǎn)的坐標(biāo)為M11,8)或M238), 點(diǎn)M1,M2關(guān)于拋物線對(duì)稱軸x=2對(duì)稱,

點(diǎn)N在拋物線對(duì)稱軸上, ∴M1N=M2N, ∴1+b+22=26, ∴b=3,或b=﹣7,

∴10+b=1310+b=3 ∴當(dāng)M點(diǎn)的坐標(biāo)為(18)時(shí),N點(diǎn)坐標(biāo)為(2,13),

當(dāng)M點(diǎn)的坐標(biāo)為(3,8)時(shí),N點(diǎn)坐標(biāo)為(23),

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,A(﹣14),B(﹣3,3),C(﹣2,1

1)已知ABCABC關(guān)于x軸對(duì)稱,畫出ABC,并寫出以下各點(diǎn)坐標(biāo):A   ;B   ;C   

2)在y軸上作出點(diǎn)P(在圖中顯示作圖過程),使得PA+PC的值最小,并寫出點(diǎn)P的坐標(biāo)   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)P是線段MN上一動(dòng)點(diǎn),分別以PMPN為一邊,在MN的同側(cè)作△APM,△BPN,并連接BM,AN

(Ⅰ)如圖1,當(dāng)PMAPPNBP且∠APM=∠BPN90°時(shí),試猜想BMAN之間的數(shù)量關(guān)系與位置關(guān)系,并證明你的猜想;

(Ⅱ)如圖2,當(dāng)△APM,△BPN都是等邊三角形時(shí),(Ⅰ)中BMAN之間的數(shù)量關(guān)系是否仍然成立?若成立,請(qǐng)證明你的結(jié)論;若不成立,試說明理由.

(Ⅲ)在(Ⅱ)的條件下,連接AB得到圖3,當(dāng)PN2PM時(shí),求∠PAB度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AB、AC邊上的高CE、BD相交于點(diǎn)P,圖中與BPE相似的三角形共有( 。

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一筆直的公路連接M,N兩地,甲車從M地駛往N地,速度為60km/h,乙車從M地駛往N地,速度為40km/h,丙車從N地駛往M地,速度為80km/h,三輛車同時(shí)出發(fā),先到目的地的車停止不動(dòng).途中甲車發(fā)生故障,于是停車修理了2.5h,修好后立即按原速駛往N地.設(shè)甲車行駛的時(shí)間為th),甲、丙兩車之間的距離為S1km).甲、乙兩車離M地的距離為S2km),S1t之間的關(guān)系如圖1所示,S2t之間的關(guān)系如圖2所示.根據(jù)題中的信息回答下列問題:

1)①圖1中點(diǎn)C的實(shí)際意義是   

②點(diǎn)B的橫坐標(biāo)是   ;點(diǎn)E的橫坐標(biāo)是   ;點(diǎn)Q的坐標(biāo)是   

2)請(qǐng)求出圖2中線段QR所表示的S2t之間的關(guān)系式;

3)當(dāng)甲、乙兩車距70km時(shí),請(qǐng)直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( )

A.?dāng)S一枚均勻的骰子,骰子停止轉(zhuǎn)動(dòng)后,6點(diǎn)朝上是必然事件

B.甲、乙兩人在相同條件下各射擊10次,他們的成績(jī)平均數(shù)相同,方差分別是,則甲的射擊成績(jī)較穩(wěn)定

C.明天降雨的概率為,表示明天有半天都在降雨

D.了解一批電視機(jī)的使用壽命,適合用普查的方式

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】教材呈現(xiàn):如圖是華師版八年級(jí)上冊(cè)數(shù)學(xué)教材第96頁(yè)的部分內(nèi)容.

請(qǐng)根據(jù)教材中的分析,結(jié)合圖①,寫出角平分線的性質(zhì)定理完整的證明過程.

定理應(yīng)用:

如圖②,在四邊形ABCD中,∠B=∠C,點(diǎn)E在邊BC上,AE平分∠BADDE平分∠ADC

1)求證:BECE

2)若四邊形ABCD的周長(zhǎng)為24,BE2,面積為30,則△ABE的邊AB的高的長(zhǎng)為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,拋物線y=x2﹣2x﹣3x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,該拋物線的頂點(diǎn)為M.

(1)求點(diǎn)A、B、C的坐標(biāo).

(2)求直線BM的函數(shù)解析式.

(3)試說明:∠CBM+∠CMB=90°.

(4)在拋物線上是否存在點(diǎn)P,使直線CP△BCM分成面積相等的兩部分?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某單位750名職工積極參加向貧困地區(qū)學(xué)校捐書活動(dòng),為了解職工的捐數(shù)量,采用隨機(jī)抽樣的方法抽取30名職工作為樣本,對(duì)他們的捐書量進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果共有4本、5本、6本、7本、8本五類,分別用A、B、C、D、E表示,根據(jù)統(tǒng)計(jì)數(shù)據(jù)繪制成了如圖所示的不完整的條形統(tǒng)計(jì)圖,由圖中給出的信息解答下列問題:

(1)補(bǔ)全條形統(tǒng)計(jì)圖;

(2)求這30名職工捐書本數(shù)的平均數(shù)、眾數(shù)和中位數(shù);

(3)估計(jì)該單位750名職工共捐書多少本?

查看答案和解析>>

同步練習(xí)冊(cè)答案