(2002•無錫)已知:四邊形ABCD中,AB=2,CD=3,M、N分別是AD,BC的中點(diǎn),則線段MN的取值范圍是( )

A.1<MN<5
B.1<MN≤5
C.<MN<
D.<MN≤
【答案】分析:當(dāng)AB∥CD時(shí),MN最短,利用中位線定理可得MN的最長值,作出輔助線,利用三角形中位線及三邊關(guān)系可得MN的其他取值范圍.
解答:解:連接BD,過M作MG∥AB,連接NG.
∵M(jìn)是邊AD的中點(diǎn),AB=2,MG∥AB,
∴MG是△ABD的中位線,BG=GD,MG=AB=×2=1;
∵N是BC的中點(diǎn),BG=GD,CD=3,
∴NG是△BCD的中位線,NG=CD=×3=,
在△MNG中,由三角形三邊關(guān)系可知MG-NG<MN<MG+NG,即-1<MN<+1,
<MN<
當(dāng)MN=MG+NG,即MN=時(shí),四邊形ABCD是梯形,
故線段MN長的取值范圍是<MN≤
故選D.
點(diǎn)評(píng):解答此題的關(guān)鍵是根據(jù)題意作出輔助線,利用三角形中位線定理及三角形三邊關(guān)系解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2002•無錫)已知直線y=kx-4(k>0)與x軸和y軸分別交于A、C兩點(diǎn);開口向上的拋物線y=ax2+bx+c過A、C兩點(diǎn),且與x軸交于另一點(diǎn)B.
(1)如果A、B兩點(diǎn)到原點(diǎn)O的距離AO、BO滿足AO=3BO,點(diǎn)B到直線AC的距離等于,求這條直線和拋物線的解析式.
(2)問是否存在這樣的拋物線,使得tan∠ACB=2,且△ABC的外接圓截y軸所得的弦長等于5?若存在,求出這樣的拋物線的解析式;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年江蘇省無錫市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•無錫)已知直線y=kx-4(k>0)與x軸和y軸分別交于A、C兩點(diǎn);開口向上的拋物線y=ax2+bx+c過A、C兩點(diǎn),且與x軸交于另一點(diǎn)B.
(1)如果A、B兩點(diǎn)到原點(diǎn)O的距離AO、BO滿足AO=3BO,點(diǎn)B到直線AC的距離等于,求這條直線和拋物線的解析式.
(2)問是否存在這樣的拋物線,使得tan∠ACB=2,且△ABC的外接圓截y軸所得的弦長等于5?若存在,求出這樣的拋物線的解析式;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《圖形的相似》(04)(解析版) 題型:解答題

(2002•無錫)已知:如圖,⊙O的半徑為r,CE切⊙O于C,且與弦AB的延長線交于點(diǎn)E,CD⊥AB于D.如果CE=2BE,且AC、BC的長是關(guān)于x的方程x2-3(r-2)x+r2-4=0的兩個(gè)實(shí)數(shù)根.
求:(1)AC、BC的長;(2)CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《圓》(10)(解析版) 題型:填空題

(2002•無錫)已知圓柱的母線長是5cm,底面半徑是2cm,則這個(gè)圓柱的側(cè)面積是    cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《圓》(03)(解析版) 題型:選擇題

(2002•無錫)已知⊙O1與⊙O2的圓心距是9cm,它們的半徑分別為3cm和6cm,則這兩圓的位置關(guān)系是( )
A.外切
B.內(nèi)切
C.相交
D.外離

查看答案和解析>>

同步練習(xí)冊(cè)答案