已知:如圖,⊙O1與⊙O2外切于M點(diǎn),AF是兩圓的外公切線(xiàn),A、B是切點(diǎn),DF經(jīng)過(guò)O1、O2,分別交⊙O1于D、⊙O2于E,AC是⊙O1的直徑,BC經(jīng)過(guò)M點(diǎn),連接AD.
(1)求證:AD∥BC;
(2)求證:MF2=AF•BF;
(3)如果⊙O1的直徑長(zhǎng)為8,tan∠ACB=,求⊙O2的直徑長(zhǎng).
【答案】分析:(1)根據(jù)同弧的圓周角相等,先證∠ADM=∠ACB,再證△O1AD為等腰三角形,根據(jù)等量代換可證∠DAC=∠ACB,即可證得.
(2)要證結(jié)論,必先證△AMF∽△MBF,根據(jù)切線(xiàn)定理,即可證得∠ADO1=∠MAB,又在第1問(wèn)的基礎(chǔ)上進(jìn)行等量代換,就可證得AAA.
(3)由切割線(xiàn)定理和勾股定理多次結(jié)合使用,即可求得.
解答:(1)證明:∵∠DO1A=∠CO1M,O1A=O1D=O1C=O1M
∴∠ADO1=∠O1MC=∠DAO1=∠O1CM(1分)
∴DA∥CM(2分)

(2)證明:連接AM,(3分)
∵∠BME=∠O1MC
又∵∠O1MC=∠ADO1∴∠BME=∠ADO1
又∵AB切⊙O1于A
∴∠ADO1=∠MAB
∴∠MAB=∠BME∠F=∠F
∴△MBF∽△AMF(4分)

即:MF2=AF•BF(5分)

(3)解:在Rt△ACB中,
∵tan∠ACB=
又∵AC=8
∴AB=6(6分)
∵BC==10
∵AB2=BM•BC
∴62=BM×10
∴BM=3.6(7分)
又∵∠ACB=∠BME
∴tan∠BME=
∴BE=2.7(8分)
∴ME==4.5(9分).
點(diǎn)評(píng):切線(xiàn)長(zhǎng)定理和切割線(xiàn)定理是中考的熱點(diǎn),掌握其用法,并與勾股定理和相似三角形綜合應(yīng)用,即可解答此類(lèi)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知;如圖,⊙O1與⊙O2內(nèi)切于點(diǎn)A,⊙O2的直徑AC交⊙O1于點(diǎn)B,⊙O2的弦FC切⊙精英家教網(wǎng)O1于點(diǎn)D,AD的延長(zhǎng)線(xiàn)交⊙O2于點(diǎn)E,連接AF、EF、BD.
(1)求證:AC•AF=AD•AE;
(2)若O1O2=9,cos∠BAD=
23
,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,⊙O1與⊙O2外切于C點(diǎn),AB一條外公切線(xiàn),A、B分別為切點(diǎn),連接AC、BC.設(shè)⊙O1的半徑為R,⊙O2的半徑為r,若tan∠ABC=
2
,則
R
r
的值為(  )
A、
2
B、
3
C、2
D、3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1998•南京)已知,如圖,⊙O1與⊙O2相交,點(diǎn)P是其中一個(gè)交點(diǎn),點(diǎn)A在⊙O2上,AP的延長(zhǎng)線(xiàn)交⊙O1于點(diǎn)B,AO2的延長(zhǎng)線(xiàn)交⊙O1于點(diǎn)C、D,交⊙O2于點(diǎn)E,連接PC、PE、PD,且
PC
PD
=
CE
DE
,過(guò)A作⊙O1的切線(xiàn)AQ,切點(diǎn)為Q.求證:
(1)∠CPE=∠DPE;
(2)AQ2-AP2=PC•PD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,⊙O1與⊙O2外切于A點(diǎn),直線(xiàn)l與⊙O1、⊙O2分別切于B,C點(diǎn),若⊙O1的半徑r1=2cm,⊙O2的半徑r2=3cm.求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,⊙O1與⊙O2相交于A、B,若兩圓半徑分別為12和5,O1O2=13,則AB=
120
13
120
13

查看答案和解析>>

同步練習(xí)冊(cè)答案