【題目】如圖,平面直角坐標(biāo)系中,已知直線(xiàn)y=x上一點(diǎn)P(1,1),C為y軸上一點(diǎn),連接PC,線(xiàn)段PC繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°至線(xiàn)段PD,過(guò)點(diǎn)D作直線(xiàn)AB⊥x軸,垂足為B;直線(xiàn)AB與直線(xiàn)y=x交于點(diǎn)A,連接CD,直線(xiàn)CD與直線(xiàn)y=x交于點(diǎn)Q.
(1)求證:OB=OC;
(2)當(dāng)點(diǎn)C坐標(biāo)為(0,3)時(shí),求點(diǎn)Q的坐標(biāo);
(3)當(dāng)△OPC≌△ADP時(shí),直接寫(xiě)出C點(diǎn)的坐標(biāo).
【答案】
(1)
證明:過(guò)P作GH⊥OC,垂足為G,交AB于H,
過(guò)P作PE⊥x軸,垂足為E,
∵AB⊥OB,
∴GH⊥AB,
∵∠CPD=90°,
∴∠GPC+∠DPH=90°,
∠GCP+∠GPC=90°,
∴∠GCP=∠DPH,
又∵∠CGP=∠PHD=90°,PC=PD,
∴△CGP≌△PHD,
∴CG=PH,
∵∠PEB=∠EBH=∠BHP=90°,
∴四邊形PEBH為矩形,
∴PH=EB,
∴CG=EB,
∵GH∥OB,OG∥PE,∠GOE=90°,
∴四邊形GOEP為矩形,
∵直線(xiàn)OA:y=x,
∴∠GOP=∠POE=45°,
∵∠GPO=∠POE=45°,
∴∠GOP=∠GPO,
∴GO=GP,
∴矩形GOEP為正方形,
∴OG=OE,
∴OG+GC=OE+EB,
即OC=OB
(2)
證明:∵P(1,1),
∴OG=BH=PG=DH=1,
∵C(0,3),
∴OB=OC=3,
∴D(3,2),
設(shè)直線(xiàn)CD的解析式為:y=kx+b,
把D(3,2)、C(0,3)代入得: ,
解得 ,
∴直線(xiàn)CD的解析式為:y=﹣ x+3,
則 解得 ,
∴Q( , )
(3)
證明:如圖2,過(guò)P作GH⊥OC,垂足為G,交AB于H,
設(shè)CG=x,則PH=x,OC=x+1,
∵△OPC≌△ADP,
∴AP=OC=x+1,AD=OP= ,
∴AH= +1,
在Rt△APH中,由勾股定理得:(x+1)2=x2+( +1)2,
x= +1,
∴C(0,2+ ).
【解析】(1)作輔助線(xiàn),構(gòu)建全等三角形,證明CG=EB,證明四邊形OGPE為正方形得OG=OE,所以O(shè)C=OB;(2)先求點(diǎn)D的坐標(biāo),再利用待定系數(shù)法求直線(xiàn)CD的解析式,與直線(xiàn)OA的解析式列方程組求出點(diǎn)Q的坐標(biāo);(3)設(shè)CG=x,根據(jù)△OPC≌△ADP表示出直角三角形APH各邊的長(zhǎng),利用勾股定理列方程求出x的值,寫(xiě)出點(diǎn)C的坐標(biāo).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:
在一個(gè)三角形中,各邊和它所對(duì)角的正弦的比相等,==,利用上述結(jié)論可以求解如下題目:
在△ABC中,∠A、∠B、∠C的對(duì)邊分別為a,b,c.若∠A=45°,∠B=30°,a=6,求b.
解:在△ABC中,∵=∴b====3.
理解應(yīng)用:
如圖,甲船以每小時(shí)30海里的速度向正北方向航行,當(dāng)甲船位于A1處時(shí),乙船位于甲船的北偏西105°方向的B1處,且乙船從B1處按北偏東15°方向勻速直線(xiàn)航行,當(dāng)甲船航行20分鐘到達(dá)A2時(shí),乙船航行到甲船的北偏西120°方向的B2處,此時(shí)兩船相距10海里.
(1)判斷△A1A2B2的形狀,并給出證明
(2)求乙船每小時(shí)航行多少海里?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠B=40°,AD是BC邊上的高,且∠DAC=20°,則∠BAC=________.
【答案】70°
【解析】∵∠B=40°,AD⊥BC,
∴∠BAD=90°-40°=50°.
∵∠DAC=20°,
∴∠BAC=∠BAD+∠DAC=50°+20°=70°.
【題型】填空題
【結(jié)束】
16
【題目】如圖所示,E,D是AB,AC上的兩點(diǎn),BD,CE交于點(diǎn)O,且AB=AC,使△ACE≌△ABD,你補(bǔ)充的條件是________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)AB的解析式為y=2x+5,與y軸交于點(diǎn)A,與x軸交于點(diǎn)B,點(diǎn)P為線(xiàn)段AB上的一個(gè)動(dòng)點(diǎn),作PE⊥y軸于點(diǎn)E,PF⊥x軸于點(diǎn)F,連接EF,則線(xiàn)段EF的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人利用不同的交通工具,沿同一路線(xiàn)從A地出發(fā)前往B地,甲出發(fā)1h后,乙出發(fā).設(shè)甲與A地相距y甲(km),乙與A地相距y乙(km),甲離開(kāi)A地時(shí)間為x(h),y甲、y乙與x之間的函數(shù)圖象如圖所示.
(1)甲的速度是 km/h.
(2)請(qǐng)分別求出y甲、y乙與x之間的函數(shù)關(guān)系式.
(3)當(dāng)乙與A地相距240km時(shí),甲與B地相距多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點(diǎn)C,D,E三點(diǎn)在同一條直線(xiàn)上,連接BD.圖中的CE、BD有怎樣的大小和位置關(guān)系?試證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,E,F(xiàn)分別為邊AB,CD的中點(diǎn),連接DE、BF、BD.
(1)求證:△ADE≌△CBF.
(2)若AD⊥BD,則四邊形BFDE是什么特殊四邊形?請(qǐng)證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列結(jié)論中,錯(cuò)誤的有( )
①在Rt△ABC中,已知兩邊長(zhǎng)分別為3和4,則第三邊的長(zhǎng)為5;②△ABC的三邊長(zhǎng)分別為a,b,c,若a2+b2=c2,則∠A=90°;③在△ABC中,若∠A∶∠B∶∠C=1∶5∶6,則△ABC是直角三角形;④若三角形的三邊長(zhǎng)之比為3∶4∶5,則該三角形是直角三角形.
A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】央視熱播節(jié)目“朗讀者”激發(fā)了學(xué)生的閱讀興趣.某校為滿(mǎn)足學(xué)生的閱讀需求,欲購(gòu)進(jìn)一批學(xué)生喜歡的圖書(shū),學(xué)校組織學(xué)生會(huì)成員隨機(jī)抽取部分學(xué)生進(jìn)行問(wèn)卷調(diào)查,被調(diào)查學(xué)生須從“文史類(lèi)、社科類(lèi)、小說(shuō)類(lèi)、生活類(lèi)”中選擇自己喜歡的一類(lèi),根據(jù)調(diào)查結(jié)果繪制了統(tǒng)計(jì)圖(未完成),請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:
(1)此次共調(diào)查了 名學(xué)生;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)圖2中“小說(shuō)類(lèi)”所在扇形的圓心角為 度;
(4)若該校共有學(xué)生2500人,估計(jì)該校喜歡“社科類(lèi)”書(shū)籍的學(xué)生人數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com