如果x-3y=5,那么1-x+3y=________.

-4
分析:只需對(duì)要求的式子變形為1-(x-3y),整體代入即可求解.
解答:∵x-3y=5,
∴1-x+3y=1-(x-3y)=1-5=-4.
點(diǎn)評(píng):注意此類題中的整體代入思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下列解方程組的方法,然后解答問題:
解方程組
14x+15y=16①
17x+18y=19②
時(shí),由于x、y的系數(shù)及常數(shù)項(xiàng)的數(shù)值較大,如果用常規(guī)的代入消元法、加減消元法來解,那將是計(jì)算量大,且易出現(xiàn)運(yùn)算錯(cuò)誤,而采用下面的解法則比較簡(jiǎn)單:
②-①得:3x+3y=3,所以x+y=1③
③×14得:14x+14y=14④
①-④得:y=2,從而得x=-1
所以原方程組的解是
x=-1①
y=2②

(1)請(qǐng)你運(yùn)用上述方法解方程組
2005x+2006y=2007
2008x+2009y=2010

(2)請(qǐng)你直接寫出方程組
1993x+1994y=1995
2007x+2008y=2009
的解是
 
;
(3)猜測(cè)關(guān)于x、y的方程組
mx+(m+1)y=m+2
nx+(n+1)y=n+2
(m≠n)的解是什么?并用方程組的解加以驗(yàn)證.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

我國(guó)著名數(shù)學(xué)家蘇步青在訪問德國(guó)時(shí),德國(guó)一位數(shù)學(xué)家給他出了這樣一道題目:
甲、乙二人相對(duì)而行,他們相距10千米,甲每小時(shí)走3千米,乙每小時(shí)走2千米,甲帶著一條狗,狗每小時(shí)跑5千米,狗跑得快,它同甲一起出發(fā),碰到乙的時(shí)候向甲跑去,碰到甲的時(shí)候又向乙跑去,問當(dāng)甲、乙兩人相遇時(shí),這條狗一共跑了多少千米?
蘇步青教授很快就解出了這道題目.同學(xué)們,你知道他是怎么解的嗎?
這道題最讓人迷惑不解的是甲身邊的那條狗.如果我們先計(jì)算狗從甲的身邊跑到乙的身邊的路程s,再計(jì)算狗從乙的身邊跑到甲的身邊的路程s,…,顯然把狗跑的路程相加,這樣很繁瑣,笨拙且不易計(jì)算.蘇教授從整體著眼,根據(jù)甲、乙出發(fā)到相遇經(jīng)歷的時(shí)間與狗所走的時(shí)間相等,即10÷(3+2)=2(小時(shí)),這樣就不難求出狗一共跑的路程是:5×2=10(千米).
蘇步青教授在解題時(shí),把注意力和著眼點(diǎn)放在問題的整體結(jié)構(gòu)上,從而能觸及問題的實(shí)質(zhì):狗從出發(fā)到甲、乙兩相遇所用的時(shí)間,恰好是甲、乙二人相遇所用的時(shí)間,從而使問題得到巧妙地解決.蘇教授這種解決問題的思想方法實(shí)際上就是數(shù)學(xué)中的整體思想的應(yīng)用.對(duì)于某些數(shù)學(xué)問題,靈活運(yùn)用整體思想,?苫y為易,捷足先登.在解二元一次方程組時(shí),也要注意這種思想方法的應(yīng)用.
比如解方程組
x+2(x+2y)=4
x+2y=1

解:把②代入①得x+2×1=4,所以x=2
把x=2代入②得2+2y=1,解之,得y=-
1
2

所以方程組的解為
x=2
y=-
1
2

同學(xué)們,你會(huì)用同樣的方法解下面兩個(gè)方程嗎?試試看!
(1)
2x-3y-2=0
2x-3y+5
7
+2y=9
(2)
x-3y
3
-
1
3
=1
2x-
x-3y
x
=5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

閱讀下列解方程組的方法,然后解答問題:
解方程組數(shù)學(xué)公式時(shí),由于x、y的系數(shù)及常數(shù)項(xiàng)的數(shù)值較大,如果用常規(guī)的代入消元法、加減消元法來解,那將是計(jì)算量大,且易出現(xiàn)運(yùn)算錯(cuò)誤,而采用下面的解法則比較簡(jiǎn)單:
②-①得:3x+3y=3,所以x+y=1③
③×14得:14x+14y=14④
①-④得:y=2,從而得x=-1
所以原方程組的解是數(shù)學(xué)公式
(1)請(qǐng)你運(yùn)用上述方法解方程組數(shù)學(xué)公式
(2)請(qǐng)你直接寫出方程組數(shù)學(xué)公式的解是________;
(3)猜測(cè)關(guān)于x、y的方程組數(shù)學(xué)公式(m≠n)的解是什么?并用方程組的解加以驗(yàn)證.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

我國(guó)著名數(shù)學(xué)家蘇步青在訪問德國(guó)時(shí),德國(guó)一位數(shù)學(xué)家給他出了這樣一道題目:
甲、乙二人相對(duì)而行,他們相距10千米,甲每小時(shí)走3千米,乙每小時(shí)走2千米,甲帶著一條狗,狗每小時(shí)跑5千米,狗跑得快,它同甲一起出發(fā),碰到乙的時(shí)候向甲跑去,碰到甲的時(shí)候又向乙跑去,問當(dāng)甲、乙兩人相遇時(shí),這條狗一共跑了多少千米?
蘇步青教授很快就解出了這道題目.同學(xué)們,你知道他是怎么解的嗎?
這道題最讓人迷惑不解的是甲身邊的那條狗.如果我們先計(jì)算狗從甲的身邊跑到乙的身邊的路程s,再計(jì)算狗從乙的身邊跑到甲的身邊的路程s,…,顯然把狗跑的路程相加,這樣很繁瑣,笨拙且不易計(jì)算.蘇教授從整體著眼,根據(jù)甲、乙出發(fā)到相遇經(jīng)歷的時(shí)間與狗所走的時(shí)間相等,即10÷(3+2)=2(小時(shí)),這樣就不難求出狗一共跑的路程是:5×2=10(千米).
蘇步青教授在解題時(shí),把注意力和著眼點(diǎn)放在問題的整體結(jié)構(gòu)上,從而能觸及問題的實(shí)質(zhì):狗從出發(fā)到甲、乙兩相遇所用的時(shí)間,恰好是甲、乙二人相遇所用的時(shí)間,從而使問題得到巧妙地解決.蘇教授這種解決問題的思想方法實(shí)際上就是數(shù)學(xué)中的整體思想的應(yīng)用.對(duì)于某些數(shù)學(xué)問題,靈活運(yùn)用整體思想,常可化難為易,捷足先登.在解二元一次方程組時(shí),也要注意這種思想方法的應(yīng)用.
比如解方程組
x+2(x+2y)=4
x+2y=1

把②代入①得x+2×1=4,所以x=2
把x=2代入②得2+2y=1,解之,得y=-
1
2

所以方程組的解為
x=2
y=-
1
2

同學(xué)們,你會(huì)用同樣的方法解下面兩個(gè)方程嗎?試試看!
(1)
2x-3y-2=0
2x-3y+5
7
+2y=9
(2)
x-3y
3
-
1
3
=1
2x-
x-3y
x
=5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:山東省期末題 題型:解答題

閱讀下列解方程組的方法,然后解答問題:
解方程組時(shí),由于x、y的系數(shù)及常數(shù)項(xiàng)的數(shù)值較大,如果用常規(guī)的代入消元法、加減消元法來解,那將是計(jì)算量大,且易出現(xiàn)運(yùn)算錯(cuò)誤,而采用下面的解法則比較簡(jiǎn)單:
②﹣①得:3x+3y=3,所以x+y=1③
③×14得:14x+14y=14④
①﹣④得:y=2,從而得x=﹣1
所以原方程組的解是 .
(1)請(qǐng)你運(yùn)用上述方法解方程組
(2)請(qǐng)你直接寫出方程組的解是__________;
(3)猜測(cè)關(guān)于x、y的方程組(m≠n)的解是什么?并用方程組的解加以驗(yàn)證.

查看答案和解析>>

同步練習(xí)冊(cè)答案