如圖,△ABC中,AB=AC,∠C=30°,AB⊥AD,AD=2cm,求BC的長.
分析:根據(jù)三角形內角和定理和等腰三角形性質求出∠B、∠BAC度數(shù),求出∠DAC=∠C,求出DC,根據(jù)含30度角的直角三角形性質求出BD,即可求出答案.
解答:解:∵AB=AC,∠C=30°,
∴∠B=∠C=30°,∠BAC=180°-30°-30°=120°,
∵AB⊥AD,
∴∠BAD=90°,
∴∠DAC=120°-90°=30°=∠C,
∴AD=DC=2cm,
∵∠BAD=90°,∠B=30°,AD=2cm,
∴BD=2AD=4cm,
∴BC=4cm+2cm=6cm.
點評:本題考查了三角形內角和定理,等腰三角形性質,含30度角的直角三角形性質的應用,關鍵是求出BD和DC長.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

26、已知:如圖,△ABC中,點D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點E,則AE與BC有什么位置關系,請說明理由.

查看答案和解析>>

同步練習冊答案