有一座拋物線型拱橋,其水面寬為18米,拱頂離水面的距離為8米,貨船在水面上的部分的橫斷面是矩形,如圖建立平面直角坐標(biāo)系.

【小題1】(1)求此拋物線的解析式,并寫出自變量的取值范圍;
【小題2】(2)如果限定的長為9米,的長不能超過多少米,才能使船通過拱橋?
【小題3】(3)若設(shè),請(qǐng)將矩形的面積用含的代數(shù)式表示,并指出的取值范圍.

【小題1】(1)依題意可知,點(diǎn),………………………………………………
設(shè)拋物線的解析式為,∴. ……………………………
 ,
自變量x的取值范圍是.………………………………………4分
【小題2】(2)
∴點(diǎn)的橫坐標(biāo)為,則點(diǎn)的縱坐標(biāo)為
 ∴點(diǎn)的坐標(biāo)為,……………………………………………………6分
因此要使貨船能通過拱橋,則貨船高度不能超過(米).………7分
【小題3】(3)由,則點(diǎn)坐標(biāo)為,………………………8分
此時(shí),……………………………………9分
, .…………………10分解析:
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

有一座拋物線型拱橋(圖1),其水面寬為18米,拱頂離水面AB的距離為9米.有一貨船要將打包好的一些長方體物品(長、寬、高分別是4米、3米、8米)放在甲板上運(yùn)過拱橋(假設(shè)載貨后船的甲板與水面大致平齊).
(1)求拋物線的解析式.
(2)若貨物堆放方式的正視圖如下(圖2),問船能載貨物通過拱橋嗎?通過計(jì)算說明你的結(jié)論.
精英家教網(wǎng)
(3)若改變貨物的堆放方式(正視圖如圖甲、圖乙).問圖甲和圖乙能否載貨物通過拱橋?假設(shè)此貨船的甲板只能提供寬13米,長18米的置物空間,為了盡可能地多裝這些長方體物品(略去其它因素),你會(huì)選用圖甲和圖乙中的哪一種載物方式,為什么?
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

有一座拋物線型拱橋,其水面寬AB為18米,拱頂O離水面AB的距離OM為8米,貨船在水面精英家教網(wǎng)上的部分的橫斷面是矩形CDEF,如圖建立平面直角坐標(biāo)系.
(1)求此拋物線的解析式;
(2)如果限定矩形的長CD為9米,那么矩形的高DE不能超過多少米,才能使船通過拱橋;
(3)若設(shè)EF=a,請(qǐng)將矩形CDEF的面積S用含a的代數(shù)式表示,并指出a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)有一座拋物線型拱橋,正常水位時(shí),橋下水面寬度為20m,拱頂距水面4m.
(1)如圖所示的直角坐標(biāo)系中,求出該拋物線的關(guān)系式.
(2)在正常水位的基礎(chǔ)上,當(dāng)水位上升h(m)時(shí),橋下水面的寬度為d(m),求出將d表示為h的函數(shù)關(guān)系式.
(3)設(shè)正常水位時(shí),橋下的水深為2m,為保證過往船只的順利通過,橋下水面的寬度不得小于18m,求水深超過多少米時(shí)就會(huì)影響過往船只在橋下順利航行?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)有一座拋物線型拱橋(如圖),正常水位時(shí)橋下河面寬20m,河面距拱頂4m.
(1)在如圖所示的平面直角坐標(biāo)系中,求出拋物線解析式;
(2)為了保證過往船只順利航行,橋下水面的寬度不得小于18m.求水面在正常水位基礎(chǔ)上漲多少m時(shí),就會(huì)影響過往船只?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,有一座拋物線型拱橋,漲潮時(shí)橋內(nèi)水面寬AB為8米,落潮時(shí)水位下降5米,橋內(nèi)水面寬CD為12米.

(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,并求此拋物線的解析式;
(2)如圖2,某種貨船在水面上的部分的橫截面是梯形EFGH,且HE=FG,EF=
2
HE,∠GHE=45°.試問落潮時(shí),能順利通過拱橋的這種貨船在水面上的部分最大高度是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案