如圖,在平行四邊形ABCD中,AE、CF分別平分∠BAD和∠DCB,交BC、AD于點(diǎn)E和點(diǎn)F.
試說(shuō)明(1)△ABE是等腰三角形;
(2)四邊形AECF是平行四邊形.

【答案】分析:(1)根據(jù)等腰三角形的判定,要證△ABE是等腰三角形,可證∠BAE=∠AEB,由已知和平行四邊形的性質(zhì)很容易證得∠BAE=∠AEB.
(2)在(1)的基礎(chǔ)上,可證AF=EC,AF∥EC,即證四邊形AECF是平行四邊形.
解答:證明:(1)∵四邊形ABCD是平行四邊形,
∴∠BAD=∠DCB,AD∥BC,
∵AE、CF分別平分∠BAD和∠DCB,
∴∠BAE=∠DAE=∠BAD,
∴∠DAE=∠AEB,
∴∠BAE=∠AEB,
∴BA=BE,
∴△ABE是等腰三角形;

(2)同理可證△DCF是等腰三角形,
∴DF=DC,
由(1)知BA=BE,
∵AB=CD,AD=BC,
∴DF=BE,
∴AF=EC,
∵AF∥EC,
∴四邊形AECF是平行四邊形.
點(diǎn)評(píng):本題考查了等腰三角形的判定和平行四邊形的判定:選擇利用“一組對(duì)邊分別平行且相等的四邊形是平行四邊形”來(lái)解決.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、如圖,在平行四邊形ABCD中,EF∥AD,GH∥AB,EF、GH相交于點(diǎn)O,則圖中共有
9
個(gè)平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,∠ABC的平分線交CD于點(diǎn)E,∠ADC的平分線交AB于點(diǎn)F,證明:四邊形DFBE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平行四邊形ABCD中,∠C=60°,BC=6厘米,DC=7厘米.點(diǎn)M是邊AD上一點(diǎn),且DM:AD=1:3.點(diǎn)E、F分別從A、C同時(shí)出發(fā),以1厘米/秒的速度分別沿AB、CB向點(diǎn)B運(yùn)動(dòng)(當(dāng)點(diǎn)F運(yùn)動(dòng)到點(diǎn)B時(shí),點(diǎn)E隨之停止運(yùn)動(dòng)),EM、CD精英家教網(wǎng)的延長(zhǎng)線交于點(diǎn)P,F(xiàn)P交AD于點(diǎn)Q.設(shè)運(yùn)動(dòng)時(shí)間為x秒,線段PC的長(zhǎng)為y厘米.
(1)求y與x之間函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(2)當(dāng)x為何值時(shí),PF⊥AD?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,AB=2
2
AO=
3
,OB=
5
,則下列結(jié)論中不正確的是(  )
A、AC⊥BD
B、四邊形ABCD是菱形
C、△ABO≌△CBO
D、AC=BD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•同安區(qū)一模)如圖,在平行四邊形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,則AD的長(zhǎng)為
4cm
4cm

查看答案和解析>>

同步練習(xí)冊(cè)答案