已知二次函數(shù)的圖象如圖所示.
(1)求二次函數(shù)的解析式及拋物線頂點(diǎn)M的坐標(biāo);
(2)若點(diǎn)N為線段BM上的一點(diǎn),過(guò)點(diǎn)N作x軸的垂線,垂足為點(diǎn)Q.當(dāng)點(diǎn)N在線段BM上運(yùn)動(dòng)時(shí)(點(diǎn)N不與點(diǎn)B,點(diǎn)M重合),設(shè)NQ的長(zhǎng)為t,四邊形NQAC的面積為s,求s與t之間的函數(shù)關(guān)系式及自變量t的取值范圍;
(3)在對(duì)稱軸右側(cè)的拋物線上是否存在點(diǎn)P,使△PAC為直角三角形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(4)將△OAC補(bǔ)成矩形,使上△OAC的兩個(gè)頂點(diǎn)成為矩形一邊的兩個(gè)頂點(diǎn),第三個(gè)頂點(diǎn)落在矩形這一邊的對(duì)邊上,試直接寫出矩形的未知的頂點(diǎn)坐標(biāo)(不需要計(jì)算過(guò)程).
(1)設(shè)拋物線的解析式y(tǒng)=a(x+1)(x-2),
∵-2=a×1×(-2),
∴a=1,
∴y=x2-x-2,其頂點(diǎn)坐標(biāo)是(
1
2
,-
9
4
);

(2)設(shè)線段BM所在的直線的解析式為:y=kx+b(k≠0),
點(diǎn)N的坐標(biāo)為N(h,-t),
0=2k+b
-
9
4
=
1
2
k+b
,
解它們組成的方程組得:
k=
3
2
b=-3
,
所以線段BM所在的直線的解析式為:y=
3
2
x-3,
N點(diǎn)縱坐標(biāo)為:-t,
∴-t=
3
2
h-3,
∴h=2-
2
3
t,
其中
1
2
<h<2,
∴s=
1
2
×1×2+
1
2
(2+t)(2-
2
3
t)=-
1
3
t2+
1
3
t+3,
∴s與t間的函數(shù)解析式為,
s=-
1
3
t2+
1
3
t+3,
∵M(jìn)點(diǎn)坐標(biāo)是(
1
2
,-
9
4
);
∴QN最大值為:
9
4
,
∴自變量的取值圍是:0<t<
9
4
;

(3)存在符合條件的點(diǎn)P,且坐標(biāo)是:P1
5
2
,
7
4
),P2
3
2
,-
5
4
).
設(shè)點(diǎn)P的坐標(biāo)為P(m,n),則 n=m2-m-2,PA2=(m+1)2+n2
PC2=m2+(n+2)2,AC2=5,
分以下幾種情況討論:
(。┤簟螦CP=90°則AP2=PC2+AC2
可得:m2+(n+2)2+(m+1)2+n2=5,
解得:m1=
5
2
,m2=-1(舍去).
所以點(diǎn)P(
5
2
,
7
4

(ⅱ)若∠PAC=90°,則PC2=PA2+AC2
∴n=m2-m-2
(m+1)2+n2=m2+(n+2)2+5
解得:m3=
3
2
,m4=0(舍去).所以點(diǎn)P(
3
2
,-
5
4
).
(ⅲ)由圖象觀察得,當(dāng)點(diǎn)P在對(duì)稱軸右側(cè)時(shí),PA>AC,所以邊AC的對(duì)角∠APC不可能是直角.

(4)以點(diǎn)O,點(diǎn)A(或點(diǎn)O,點(diǎn)C)為矩形的兩個(gè)頂點(diǎn),第三個(gè)頂點(diǎn)落在矩形這一邊OA(或邊OC)的對(duì)邊上,
如圖,此時(shí)未知頂點(diǎn)坐標(biāo)是點(diǎn)P(-1,-2),以點(diǎn)A,點(diǎn)C為矩形的兩頂點(diǎn),
第三個(gè)頂點(diǎn)落在矩形這一邊AC的對(duì)邊上,
如圖,此時(shí)未知頂點(diǎn)坐標(biāo)是P1(-1,-2),P2(-
1
5
2
5
)或
4
5
,-
8
5
).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖(1),拋物線y=ax2-3ax+b經(jīng)過(guò)A(-1,0),C(3,-4)兩點(diǎn),與y軸交于點(diǎn)D,與x軸交于另一點(diǎn)B.
(1)求此拋物線的解析式;
(2)若直線L:y=kx+1(k≠0)將四邊形ABCD的面積分成相等的兩部分,求直線L的解析式;
(3)如圖(2),過(guò)點(diǎn)E(1,1)作EF⊥x軸于點(diǎn)F,將△AEF繞平面內(nèi)某點(diǎn)旋轉(zhuǎn)180°后得△MNT(點(diǎn)M、N、T分別與點(diǎn)A,E,F(xiàn)對(duì)應(yīng)),使點(diǎn)M,N在拋物線上,求點(diǎn)M,N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線y=ax2+bx+3與x軸相交于點(diǎn)A(-1,0)、B(3,0),與y軸相交于點(diǎn)C,點(diǎn)P為線段OB上的動(dòng)點(diǎn)(不與O、B重合),過(guò)點(diǎn)P垂直于x軸的直線與拋物線及線段BC分別交于點(diǎn)E、F,點(diǎn)D在y軸正半軸上,OD=2,連接DE、OF.
(1)求拋物線的解析式;
(2)當(dāng)四邊形ODEF是平行四邊形時(shí),求點(diǎn)P的坐標(biāo);
(3)過(guò)點(diǎn)A的直線將(2)中的平行四邊形ODEF分成面積相等的兩部分,求這條直線的解析式.(不必說(shuō)明平分平行四邊形面積的理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線C1:y=ax2+4ax+4a-5的頂點(diǎn)為P,與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),點(diǎn)B的橫坐標(biāo)是1.
(1)求拋物線的解析式和頂點(diǎn)P的坐標(biāo);
(2)將拋物線沿x軸翻折,再向右平移,平移后的拋物線C2的頂點(diǎn)為M,當(dāng)點(diǎn)P、M關(guān)于點(diǎn)B成中心對(duì)稱時(shí),求平移后的拋物線C2的解析式;
(3)直線y=-
3
5
x+m
與拋物線C1、C2的對(duì)稱軸分別交于點(diǎn)E、F,設(shè)由點(diǎn)E、P、F、M構(gòu)成的四邊形的面積為s,試用含m的代數(shù)式表示s.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知:如圖所示,一次函數(shù)有y=-2x+3的圖象與x軸、y軸分別交于A、C兩點(diǎn),二次函數(shù)y=x2+bx+c的圖象過(guò)點(diǎn)C,且與一次函數(shù)在第二象限交于另一點(diǎn)B,若AC:CB=1:2,那么這二次函數(shù)的頂點(diǎn)坐標(biāo)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在Rt△ABC中,∠A=90°,tanB=
3
4
,點(diǎn)P在線段AB上運(yùn)動(dòng),點(diǎn)Q、R分別在線段BC,AC上,且使得四邊形APQR是矩形.設(shè)AP的長(zhǎng)是x,矩形APQR面積為y,已知y是x的函數(shù),其圖象是過(guò)點(diǎn)(12,36)的拋物線上的一部分.
(1)求AB的長(zhǎng);
(2)當(dāng)AP為何值時(shí),矩形APQR的面積最大,并求出最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線y=-x2-3x+4和拋物線y=x2-3x-4相交于A,B兩點(diǎn).點(diǎn)P在拋物線C1上,且位于點(diǎn)A和點(diǎn)B之間;點(diǎn)Q在拋物線C2上,也位于點(diǎn)A和點(diǎn)B之間.
(1)求線段AB的長(zhǎng);
(2)當(dāng)PQy軸時(shí),求PQ長(zhǎng)度的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,用長(zhǎng)20m的籬笆,一面靠墻圍成一個(gè)長(zhǎng)方形的園子,怎么圍才能使園子的面積最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

問(wèn)題背景:
若矩形的周長(zhǎng)為1,則可求出該矩形面積的最大值.我們可以設(shè)矩形的一邊長(zhǎng)為x,面積為s,則s與x的函數(shù)關(guān)系式為:s=-x2+
1
2
x
(x>0),利用函數(shù)的圖象或通過(guò)配方均可求得該函數(shù)的最大值.
提出新問(wèn)題:
若矩形的面積為1,則該矩形的周長(zhǎng)有無(wú)最大值或最小值?若有,最大(。┲凳嵌嗌伲
分析問(wèn)題:
若設(shè)該矩形的一邊長(zhǎng)為x,周長(zhǎng)為y,則y與x的函數(shù)關(guān)系式為:y=2(x+
1
x
)
(x>0),問(wèn)題就轉(zhuǎn)化為研究該函數(shù)的最大(。┲盗耍
解決問(wèn)題:
借鑒我們已有的研究函數(shù)的經(jīng)驗(yàn),探索函數(shù)y=2(x+
1
x
)
(x>0)的最大(小)值.
(1)實(shí)踐操作:填寫下表,并用描點(diǎn)法畫出函數(shù)y=2(x+
1
x
)
(x>0)的圖象:
x1/41/31/21234
y
17
2
20
3
545
20
3
17
2
(2)觀察猜想:觀察該函數(shù)的圖象,猜想當(dāng)x=______時(shí),函數(shù)y=2(x+
1
x
)
(x>0)有最______值(填“大”或“小”),是______.
(3)推理論證:?jiǎn)栴}背景中提到,通過(guò)配方可求二次函數(shù)s=-x2+
1
2
x
(x>0)的最大值,請(qǐng)你嘗試通過(guò)配方求函數(shù)y=2(x+
1
x
)
(x>0)的最大(。┲担宰C明你的猜想.〔提示:當(dāng)x>0時(shí),x=(
x
)2

查看答案和解析>>

同步練習(xí)冊(cè)答案