【題目】如圖,一次函數(shù) y=-x+b 與反比例函數(shù)y=(x>0)的圖象交于 A,B 兩點,與 x 軸、y軸分別交于C,D 兩點,連接 OA,OB,過 A AEx 軸于點 E,交 OB 于點F,設(shè)點 A 的橫坐標為 m. SOAF+S 四邊形 EFBC=4,則 m 的值是( )

A. 1 B. C. D.

【答案】C

【解析】

AM⊥ODM,BN⊥OCN.記△AOF面積為S,則△OEF面積為2-S,四邊形EFBC面積為4-S,△OBC和△OAD面積都是6-2S,△ADM面積為4-2S=2(2-s),所以SADM=2SOEF,推出EF=AM=NB,得B(2m,)代入直線解析式即可解決問題.

AM⊥ODM,BN⊥OCN.

∵反比例函數(shù)y=,一次函數(shù)y=-x+b都是關(guān)于直線y=x對稱,

∴AD=BC,OD=OC,DM=AM=BN=CN,記△AOF面積為S,

則△OEF面積為2-S,四邊形EFBC面積為4-S,△OBC和△OAD面積都是6-2S,△ADM面積為4-2S=2(2-s),

∴SADM=2SOEF

由對稱性可知AD=BC,OD=OC,∠ODC=∠OCD=45°,△AOM≌△BON,AM=NB=DM=NC,
∴EF=AM=NB,

∴EF是△OBN的中位線,

∴N(2m,0),

∴點B坐標(2m,)代入直線y=-x+m+

=-2m+m+,整理得到m2=2,

∵m>0,

∴m=

故答案為

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】為增強學生環(huán)保意識,某中學組織全校2000名學生參加環(huán)保知識大賽,比賽成績均為整數(shù),從中抽取部分同學的成績進行統(tǒng)計,并繪制成如圖統(tǒng)計圖.請根據(jù)圖中提供的信息,解答下列問題:

(1)若抽取的成績用扇形圖來描述,則表示第三組(79.5~89.5)”的扇形的圓心角為多少度;

(2)若成績在90分以上(含90分)的同學可以獲獎,請估計該校約有多少名同學獲獎?

(3)某班準備從成績最好的4名同學(男、女各2名)中隨機選取2名同學去社區(qū)進行環(huán)保宣傳,則選出的同學恰好是11女的概率為多少.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=-x2-2x+3.

(1)將其配方成y=a(x-k)2+h的形式,并寫出它的開口方向、對稱軸及頂點坐標.

(2)在平面直角坐標系中畫出函數(shù)的圖象,并觀察圖象,當y≥0時,x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定理:直角三角形斜邊上的中線等于斜邊的一半,即:如圖1,在RtABC中,∠ACB90°,若點D是斜邊AB的中點,則CDAB,運用:如圖2ABC中,∠BAC90°,AB2,AC3,點DBC的中點,將ABD沿AD翻折得到AED連接BECE,DE,則CE的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖(1),ABCAOD都是等腰直角三角形,BAC=EAD=90°,點B在線段AE上,點C在線段AD上,請直接寫出線段BE與線段CD的數(shù)量關(guān)系與位置關(guān)系;

2)如圖(2),將圖(1)中的ABC繞點A順時針施轉(zhuǎn)αα360°),那么(1)中線段BE與線段CD的關(guān)系是否還成立?如果成立,請你結(jié)合圖(2)給出的情形進行證明;如果不成立,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,函數(shù)y=x的圖象與函數(shù)y的圖象相交于點P(1,m).

(1) m,k 的值.

(2)直線 y=2與函數(shù)y=x的圖象相交于點A,與函數(shù)y的圖象相交于點B,求線段 AB .

(3)直接寫出不等式x的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A1、A2、…A2018在函數(shù)y=2x2位于第二象限的圖象上,點B1、B2,…,B2018在函數(shù)y=2x2位于第一象限的圖象上,點C1,C2,…,C2018y軸的正半軸上,若四邊形OA1C1B1、C1A2C2B2,…,C2017A2018C2018B2018都是正方形,則正方形C2017A2018C2018B2018的邊長是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線l1的表達式為:y=-3x+3,且直線l1x軸交于點D,直線l2經(jīng)過點A,B,直線l1,l2交于點C

1)求點D的坐標;

2)求直線l2的解析表達式;

3)求ADC的面積;

4)在直線l2上存在異于點C的另一點P,使得ADPADC的面積相等,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,ABAC,EFEG,ABCEFG,ADBC于點D,EHFG于點H

(1) 直接寫出AD、EH的數(shù)量關(guān)系:___________________

(2) EFG沿EH剪開,讓點E和點C重合

按圖2放置EHG,將線段CD沿EH平移至HN,連接ANGN,求證:ANGN

按圖3放置EHG,BCE)、H三點共線,連接AGEH于點M.若BD1AD3,求CM的長度

查看答案和解析>>

同步練習冊答案