【題目】(閱讀)|4﹣1|表示41差的絕對(duì)值,也可以理解為41兩數(shù)在數(shù)軸上所對(duì)應(yīng)的兩點(diǎn)之間的距離;|4+1|可以看做|4﹣(﹣1)|,表示4與﹣1的差的絕對(duì)值,也可以理解為4與﹣1兩數(shù)在數(shù)軸上所對(duì)應(yīng)的兩點(diǎn)間的距離.

(1)|4﹣(﹣1)|=   

(2)|5+2|=   

(3)利用數(shù)軸找出所有符合條件的整數(shù)x,使得|x+3|=5,則x=   

(4)利用數(shù)軸找出所有符合條件的整數(shù)x,使得|x+3|+|x﹣2|=5,這樣的整數(shù)是:   

【答案】(1)5;(2)7;(3)2或﹣8;(4)﹣3、﹣2、﹣1、0、1、2.

【解析】(1)根據(jù)4-1兩數(shù)在數(shù)軸上所對(duì)應(yīng)的兩點(diǎn)之間的距離是5,可得結(jié)論.

(2)根據(jù)絕對(duì)值的意義即可得到結(jié)論;

(3)根據(jù)||x+3|=5表示x-3兩數(shù)在數(shù)軸上所對(duì)應(yīng)的兩點(diǎn)之間的距離是5,可得結(jié)論.

(4)因?yàn)?/span>-32兩數(shù)在數(shù)軸上所對(duì)應(yīng)的兩點(diǎn)之間的距離是5,所以使得|x+3|+|x-2|=5成立的整數(shù)是-32之間的所有整數(shù)(包括-32),據(jù)此求出這樣的整數(shù)有哪些即可.

1)|4-(-1)|=5;

(2)|5+2|=7;

(3)|x+3|=5,

x+3=±5,

x=2-8,

(4)-32兩數(shù)在數(shù)軸上所對(duì)應(yīng)的兩點(diǎn)之間的距離是5,

∴使得|x+3|+|x-2|=5成立的整數(shù)是-32之間的所有整數(shù)(包括-24),

∴這樣的整數(shù)是-3、-2、-1、0、1、2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】水果店以每箱60元新進(jìn)一批蘋果共400箱,為計(jì)算總重量,從中任選30箱蘋果稱重,發(fā)現(xiàn)每箱蘋果重量都在10千克左右,現(xiàn)以10千克為標(biāo)準(zhǔn),超過(guò)10千克的數(shù)記為正數(shù),不足10千克的數(shù)記為負(fù)數(shù),將稱重記錄如下:

規(guī)格

﹣0.2

﹣0.1

0

0.1

0.2

0.5

筐數(shù)

5

8

2

6

8

1

(1)求30箱蘋果的總重量

(2)若每千克蘋果的售價(jià)為10元,則賣完這批蘋果共獲利多少元

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校部分團(tuán)員參加社會(huì)公益活動(dòng),準(zhǔn)備購(gòu)進(jìn)一批許愿瓶進(jìn)行銷售,并將所得利 潤(rùn)捐助給慈善機(jī)構(gòu).根據(jù)市場(chǎng)調(diào)查,這種許愿瓶一段時(shí)間內(nèi)的銷售量y (單位:個(gè))與
銷售單價(jià)x(單位:元/個(gè))之間的對(duì)應(yīng)關(guān)系如圖所示:

(1)y與x之間的函數(shù)關(guān)系是
(2)若許愿瓶的進(jìn)價(jià)為6元/個(gè),按照上述市場(chǎng)調(diào)查的銷售規(guī)律,求銷售利潤(rùn)w(單位:元)與銷售單價(jià)x(單位:元/個(gè))之間的函數(shù)關(guān)系式;
(3)在(2)問(wèn)的條件下,若許愿瓶的進(jìn)貨成本不超過(guò)900元,要想獲得最大利潤(rùn),試確定這種許愿瓶的銷售單價(jià),并求出此時(shí)的最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】張大伯從報(bào)社以每份0.4元的價(jià)格購(gòu)進(jìn)了份報(bào)紙,以每份0.5元的價(jià)格售出了份報(bào)紙,剩余的以每份0.2元的價(jià)格退回報(bào)社,則張大伯賣報(bào)收入()

A. 0.7b-0.6a B. 0.5b-0.2a C. 0.7b-0.6a D. 0.3b-0.2a

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料,解答下面的問(wèn)題:

我們知道方程有無(wú)數(shù)個(gè)解,但在實(shí)際生活中我們往往只需求出其

正整數(shù)解.

例:由,得:,(x、y為正整數(shù))

,則有.又為正整數(shù),則為正整數(shù).由2與3互質(zhì),可知:x為3的倍數(shù),從而x=3,代入∴2x+3y=12的正整數(shù)解為

問(wèn)題:

(1)請(qǐng)你寫出方程的一組正整數(shù)解:      .

(2)若為自然數(shù),則滿足條件的x值為      .

(3)七年級(jí)某班為了獎(jiǎng)勵(lì)學(xué)習(xí)進(jìn)步的學(xué)生,購(gòu)買了單價(jià)為3元的筆記本與單價(jià)為5元的鋼筆兩種獎(jiǎng)品,共花費(fèi)35元,問(wèn)有幾種購(gòu)買方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,圓的周長(zhǎng)為4個(gè)單位長(zhǎng)度,在圓的4等分點(diǎn)處標(biāo)上數(shù)字0,1,2,3,先讓圓周上數(shù)字0所對(duì)應(yīng)的點(diǎn)與數(shù)軸上的數(shù)-2所對(duì)應(yīng)的點(diǎn)重合,再讓圓沿著數(shù)軸按順時(shí)針?lè)较驖L動(dòng),那么數(shù)軸上的數(shù)-2017將與圓周上的哪個(gè)數(shù)字重合(

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在紙面上有一數(shù)軸(如圖),折疊紙面.例如:若數(shù)軸上數(shù)2表示的點(diǎn)與數(shù)﹣2表示的點(diǎn)重合,則數(shù)軸上數(shù)﹣4表示的點(diǎn)與數(shù)4表示的點(diǎn)重合,根據(jù)你對(duì)例題的理解,解答下列問(wèn)題:

若數(shù)軸上數(shù)﹣3表示的點(diǎn)與數(shù)1表示的點(diǎn)重合.(根據(jù)此情境解決下列問(wèn)題)

①則數(shù)軸上數(shù)3表示的點(diǎn)與數(shù)_______________表示的點(diǎn)重合.

②若點(diǎn)A到原點(diǎn)的距離是5個(gè)單位長(zhǎng)度,并且A、B兩點(diǎn)經(jīng)折疊后重合,則B點(diǎn)表示的數(shù)是_________.

③若數(shù)軸上M、N兩點(diǎn)之間的距離為2010,并且M、N兩點(diǎn)經(jīng)折疊后重合,

如果M點(diǎn)表示的數(shù)比N點(diǎn)表示的數(shù)大,則M點(diǎn)表示的數(shù)是________.則N點(diǎn)

表示的數(shù)是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線 x軸的負(fù)半軸交于點(diǎn)A,與y軸交于點(diǎn)B,連結(jié)AB.點(diǎn)C 在拋物線上,直線AC與y軸交于點(diǎn)D.

(1)求c的值及直線AC的函數(shù)表達(dá)式;
(2)點(diǎn)P在x軸的正半軸上,點(diǎn)Q在y軸正半軸上,連結(jié)PQ與直線AC交于點(diǎn)M,連結(jié)MO并延長(zhǎng)交AB于點(diǎn)N,若M為PQ的中點(diǎn).
①求證:△APM∽△AON;
②設(shè)點(diǎn)M的橫坐標(biāo)為m , 求AN的長(zhǎng)(用含m的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市甲、乙兩個(gè)汽車銷售公司,去年一至十月份每月銷售同種品牌汽車的情況如圖所示:

請(qǐng)你根據(jù)上圖填寫下表:

銷售公司

平均數(shù)

方差

中位數(shù)

眾數(shù)

9

9

8

請(qǐng)你從以下兩個(gè)不同的方面對(duì)甲、乙兩個(gè)汽車銷售公司去年一至十月份的銷售情況進(jìn)行分析:

從平均數(shù)和方差結(jié)合看;

從折線圖上甲、乙兩個(gè)汽車銷售公司銷售數(shù)量的趨勢(shì)看分析哪個(gè)汽車銷售公司較有潛力

查看答案和解析>>

同步練習(xí)冊(cè)答案