當(dāng)△=b2-4ac>0時(shí),二次函數(shù)y=ax2+bx+c的圖象與x軸,y軸的三個(gè)交點(diǎn)構(gòu)成的三角形的面積是


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
B
分析:根據(jù)圖象與x軸的交點(diǎn)坐標(biāo)為:(,0),(,0),進(jìn)而求出兩點(diǎn)之間距離,再求出三角形的高得出面積即可.
解答:圖象與x軸的交點(diǎn)坐標(biāo)為:(,0),(,0),
∴兩點(diǎn)之間距離為:
|x1-x2|
=|-|,
=,
又∵x=0時(shí),y=c,
∴S=
故選:B.
點(diǎn)評(píng):此題主要考查了二次函數(shù)綜合應(yīng)用,根據(jù)已知得出兩點(diǎn)之間距離以及三角形的高是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

24、先閱讀下列知識(shí),然后解答問題:
含有一個(gè)未知數(shù),并且未知數(shù)的最高次指數(shù)是2的方程,叫做一元二次方程,如:x2-2x+1=0.已知關(guān)于x的一元二次方程ax2+bx+c=0(a、b、c表示已知量,a≠0)的解的情況是:
①當(dāng)b2-4ac>0時(shí),方程有兩個(gè)不相等的解;
②當(dāng)b2-4ac=0時(shí),方程有兩個(gè)相等的解(即一個(gè)解);
③當(dāng)b2-4ac<0時(shí),方程沒有解.
(1)一元二次方程2x2-4x+5=0有幾個(gè)解?為什么?
(2)當(dāng)a取何值時(shí),關(guān)于x的一元二次方程x2-2x+(a-2)=0有兩個(gè)不相等的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

設(shè)x1,x2是關(guān)于x的方程x2-4x+k+1=0的兩個(gè)實(shí)數(shù)根.試問:是否存在實(shí)數(shù)k,使得x1•x2>x1+x2成立?請(qǐng)說明理由.
(溫馨提示:關(guān)于x的一元二次方程ax2+bx+c=0(a≠0),當(dāng)b2-4ac≥0時(shí),則它的兩個(gè)實(shí)數(shù)根是:x1,2=
-b±
b2-4ac
2a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

下列說法正確的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

拋物線y=ax2+bx+c與x軸的交點(diǎn)個(gè)數(shù)是由
△=b2-4ac
△=b2-4ac
決定的:當(dāng)
△=b2-4ac>0
△=b2-4ac>0
時(shí),拋物線與x軸有兩個(gè)交點(diǎn),交點(diǎn)橫坐標(biāo)是方程
ax2+bx+c=0
ax2+bx+c=0
的兩根;當(dāng)
(-△=b2-4ac=0
(-△=b2-4ac=0
時(shí),拋物線與x軸有一個(gè)交點(diǎn),交點(diǎn)坐標(biāo)是
(-
b
2a
,0)
(-
b
2a
,0)
;當(dāng)
△=b2-4ac<0時(shí)
△=b2-4ac<0時(shí)
時(shí),拋物線與x軸沒有交點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

當(dāng)△=b2-4ac>0時(shí),二次函數(shù)y=ax2+bx+c的圖象與x軸,y軸的三個(gè)交點(diǎn)構(gòu)成的三角形的面積是( 。
A、
c
2a
B、
|c|
2|a|
C、
c
4a
D、
|c|
4|a|

查看答案和解析>>

同步練習(xí)冊(cè)答案