【題目】類比等腰三角形的定義,我們定義:有一組鄰邊相等的凸四邊形叫做等鄰邊四邊形”.

(1)如圖 1,在四邊形 ABCD 中,添加一個條件使得四邊形 ABCD 等鄰邊四邊形.請寫出你添加的一個條件.

(2)小紅猜想:對角線互相平分的等鄰邊四邊形是菱形.她的猜想正確嗎?請說明理由.

(3)如圖 2,小紅作了一個RtABC,其中ABC=90°,AB=2,BC=1,并將 RtABC 沿ABC 的平分線 BB方向平移得到ABC,連結(jié) AA′, BC′.小紅要使得平移后的四邊形 ABCA等鄰邊四邊形,應平移多少距離(即線段 BB 的長)?

【答案】(1)ABBC BCCD CDAD ADAB;(2)解:小紅的結(jié)論正確,理由詳見解析;(3)平移 2

【解析】

(1)由“等鄰邊四邊形”的定義易得出結(jié)論;

(2)①先利用平行四邊形的判定定理得平行四邊形,再利用“等鄰邊四邊形”定義得鄰邊相等,得出結(jié)論;

②由平移的性質(zhì)易得BB′=AA′,A′B′∥AB,A′B′=AB=2,B′C′=BC=1,A′C′=AC=5,再利用“等鄰邊四邊形”定義分類討論,由勾股定理得出結(jié)論;

(3)由旋轉(zhuǎn)的性質(zhì)可得△ABF≌△ADC,由全等性質(zhì)得∠ABF=∠ADC,∠BAF=∠DAC,AF=AC,F(xiàn)B=CD,利用相似三角形判定得△ACF∽△ABD,由相似的性質(zhì)和四邊形內(nèi)角和得∠CBF=90°,利用勾股定理,等量代換得出結(jié)論.

(1)解:ABBC BCCD CDAD ADAB

(2)解:小紅的結(jié)論正確.

理由如下:四邊形的對角線互相平分,

這個四邊形是平行四邊形,

四邊形是等鄰邊四邊形”,

這個四邊形有一組鄰邊相等,

這個等鄰邊四邊形是菱形,

3)解:由ABC90°,AB2,BC1,得:AC ,

Rt△ABC 平移得到 Rt△ABC′,

BA′=AA′,AB′∥ABAB′=AB=2,BC′=BC=1,AC′=AC

如圖 1,當 AA′=AB 時,BB′=AA′=AB=2,

如圖 2,當 AA′=AC時,BB′=AA′=AC′=,

AC′=BC′=時,如圖 3,延長 CB AB 于點 D,則 CB′⊥AB

BB平分ABC,

∴∠ABB ABC=45°

∴∠BBD=∠ABB′=45°,

BDBD,

BDBDx,則 CDx+1,BBx

根據(jù)在 Rt△BCD 中,BC2CD2+BD2 x2+(x+1)2=5

解得:x=1 x=﹣2(不合題意,舍去)

BB′=

BCAB2 ,如圖4,與III方法同理可得(舍去)

.

故應平移 2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:矩形,點的延長線上,連接,,且,的平分線于點

1)如圖1,求的大小;

2)如圖2,過點的延長線于點,求證:;

3)如圖3,在(2)的條件下,于點,點的中點,連接于點,點上,且,連接,且.延長于點,連接,若的周長與的周長的差為2,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°.

(1)用尺規(guī)在邊BC上求作一點P,使PA=PB(不寫作法,保留作圖痕跡);

(2)連接AP,若AP平分∠CAB,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某貯水塔在工作期間,每小時的進水量和出水量都是固定不變的.從凌晨4點到早8點只進水不出水,8點到12點既進水又出水,14點到次日凌晨只出水不進水.下圖是某日水塔中貯水量y(立方米)與x(時)的函數(shù)圖象.

1)求每小時的進水量;

2)當8x12時,求yx之間的函數(shù)關系式;

3)從該日凌晨4點到次日凌晨,當水塔中的貯水量不小于28立方米時,直接寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=8,BC=4,過對角線BD的中點O的直線分別交AB、CD于點E、F,連接DE,BF.

(1)求證:四邊形BEDF是平行四邊形;

(2)當四邊形BEDF是菱形時,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知頂點為(﹣3,﹣6)的拋物線y=ax2+bx+c經(jīng)過點(﹣1,﹣4),則下列結(jié)論中錯誤的是( 。

A. b2>4ac

B. ax2+bx+c≥﹣6

C. 若點(﹣2,m),(﹣5,n)在拋物線上,則m>n

D. 關于x的一元二次方程ax2+bx+c=﹣4的兩根為﹣5和﹣1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:直線與直線互為友好直線,如:直線互為友好直線

1)點在直線友好直線上,則________

2)直線上的點又是它的友好直線上的點,求點的坐標;

3)對于直線上的任意一點,都有點在它的友好直線上,求直線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BD,CE分別是ABC的兩邊上的高,過DDGBCG,分別交CEBA的延長線于FH,求證:

(1)DG2BG·CG;

(2)BG·CGGF·GH.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法不正確的是( 。

A. 某種彩票中獎的概率是,買1000張該種彩票一定會中獎

B. 了解一批電視機的使用壽命適合用抽樣調(diào)查

C. 若甲組數(shù)據(jù)的標準差S=0.31,乙組數(shù)據(jù)的標準差S=0.25,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定

D. 在一個裝有白球和綠球的袋中摸球,摸出黑球是不可能事件

查看答案和解析>>

同步練習冊答案