(ab均為正實數(shù)) .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀理解:
對于任意正實數(shù)a,b,∵(
a
-
b
)2
≥0,∴a-2
ab
+b≥0,∴a+b≥2
ab
,只有點a=b時,等號成立.
結(jié)論:在a+b≥2
ab
(a,b均為正實數(shù))中,若ab為定值p,則a+b≥2
p
,只有當(dāng)a=b時,a+b有最小值2
p

根據(jù)上述內(nèi)容,回答下列問題:
(1)若m>0,只有當(dāng)m=
 
時,m+
1
m
有最小值
 
;
(2)思考驗證:
①如圖1,AB為半圓O的直徑,C為半圓上任意一點,(與點A,B不重合).過點C作CD⊥AB,垂足為D,AD=a,DB=b.試根據(jù)圖形驗證a+b≥2
ab
,并指出等號成立時的條件;
②探索應(yīng)用:如圖2,已知A(-3,0),B(0,-4)P為雙曲線y=
12
x
(x>0)
上的任意一點,過點P作PC⊥x軸于點C,PD⊥y軸于點D.求四邊形ABCD面積的最小值,并說明此時四邊形ABCD的形狀.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀理解:對于任意正實數(shù)a、b,∵(
a
-
b
)2
≥0,∴a-2
ab
+b
≥0,∴a+b≥2
ab
,只有當(dāng)a=b時,等號成立.
結(jié)論:在a+b≥2
ab
(a、b均為正實數(shù))中,若ab為定值p,則a+b≥2
p
,只有當(dāng)a=b時,a+b有最小值2
p

根據(jù)上述內(nèi)容,回答下列問題:
(1)若m>0,只有當(dāng)m=
 
時,m+
1
m
有最小值
 

(2)若m>0,只有當(dāng)m=
 
時,2m+
8
m
有最小值
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀理解
對于任意正實數(shù)a,b,∵(
a
-
b
)2
≥0,∴a+b-2
ab
≥0,∴a+b≥2
ab
,只有當(dāng)a=b時,等號成立.
結(jié)論:在a+b≥2
ab
(a,b均為正實數(shù))中,若ab為定值p,則a+b≥2
p
只有當(dāng)a=b時,a+b有最小值2
p

根據(jù)上述內(nèi)容,回答下列問題:
(1)若m>0,只有當(dāng)m=
 
時,m+
1
m
有最小值
 

(2)探索應(yīng)用
如圖,已知A(-2,0),B(0,-3),P為雙曲線y=
6
x
(x>0)上的任意一點,過點P作PC⊥x軸于點C,PD⊥y軸于點D.求四邊形ABCD面積的最小值,并說明此時四邊形ABCD的形狀.
精英家教網(wǎng)
(3)實踐應(yīng)用
建筑一個容積為800m3,深為8m的長方體蓄水池,池壁每平方米造價為80元,池底每平方米造價為120元,如何設(shè)計池底的長、寬,使總造價最低?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

計算:(1)
3
2+
3
×
3
3
1
27
-(-2)0+| 
3
-
2
 |-1
;
(2)
2
b
ab5
•(-
3
2
a3b
1
3
b
a
(a、b均為正實數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀理解:對于任意正實數(shù)a,b,(
a
-
b
2≥0,∴a-2
ab
+b≥0,只有當(dāng)a=b時,等號成立.
結(jié)論:在a+b≥2
ab
(a,b均為正實數(shù))中,若ab為定值p,則a+b≥2
p

只有當(dāng)a=b時,a+b有最小值2
p

根據(jù)上述內(nèi)容,回答下列問題:
(1)若m>0,只有當(dāng)m=
1
1
時,m+
1
m
有最小值
2
2

(2)探索應(yīng)用:已知A(-3,0),B(0,-4),點P為雙曲線y=
12
x
(x>0)
上的任意一點,過點P作PC⊥x軸于點C,PD⊥y軸于D.求四邊形ABCD面積的最小值,并說明此時四邊形ABCD的形狀.

查看答案和解析>>

同步練習(xí)冊答案