【題目】如圖,菱形ABCD中,EAD的中點,EFACCB的延長線于點F

1DEBF相等嗎?請說明理由.

2)連接AFBE,四邊形AFBE是平行四邊形嗎?說明理由.

【答案】1)、相等,理由見解析;(2)、是,理由見解析.

【解析】試題分析:(1)、連接BD,AF,BE,根據(jù)菱形的性質(zhì)得出AC⊥BD,結合EF⊥AC得出EF∥BD,結合ED∥FB得出四邊形EDBF是平行四邊形,從而得出結論;(2)、根據(jù)E為AD的中點得出AE=ED,則AE=BF,結合AE∥BF得出四邊形AEBF為平行四邊形,從而說明結論.

試題解析:(1)、連接BD,AF,BE, 在菱形ABCD中,AC⊥BD ∵EF⊥AC,

∴EF∥BD,又ED∥FB, ∴四邊形EDBF是平行四邊形,DE=BF,

(2)、∵E為AD的中點, ∴AE=ED,∴AE=BF, 又AE∥BF, ∴四邊形AEBF為平行四邊形,

即AB與EF互相平分.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,AD∥BC,ED∥BF,且AF=CE. 求證:四邊形ABCD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線ABCD相交于點O,OECD,OF平分∠BOD

1)圖中除直角外,請寫出一對相等的角嗎:   (寫出符合的一對即可)

2)如果∠AOE=26°,求∠BOD和∠COF的度數(shù).(所求的角均小于平角)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠AOB=115°,EOF =155°,OA平分∠EOC,OB平分∠DOF,

1求∠AOE+FOB度數(shù);

2求∠COD度數(shù)。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果3y92m+2=0是關于y的一元一次方程,則m=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)的圖象a過點M(﹣1,﹣4.5),N(1,﹣1.5)
(1)求此函數(shù)解析式,并畫出圖象;
(2)求出此函數(shù)圖象與x軸、y軸的交點A、B的坐標;
(3)若直線a與b相交于點P(4,m),a、b與x軸圍成的△PAC的面積為6,求出點C的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:2 ×3 + +| ﹣1|﹣π0+( 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的有( ) ①﹣(﹣3)的相反數(shù)是﹣3
②近似數(shù)1.900×105精確到百位
③代數(shù)式|x+2|﹣3的最小值是0
④兩個六次多項式的和一定是六次多項式.
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學;顒有〗M在作三角形的拓展圖形,研究其性質(zhì)時,經(jīng)歷了如下過程:
操作發(fā)現(xiàn):
(1)已知,△ABC,如圖1,分別以AB和AC為邊向△ABC外側(cè)作等邊△ABD和等邊△ACE,連接BE、CD,請你完成作圖 , 并猜想BE與CD的數(shù)量關系是 . (要求:尺規(guī)作圖,不寫作法但保留作圖痕跡)
類比探究:

(2)如圖2,分別以AB和AC為邊向△ABC外側(cè)作正方形ABDE和正方形ACFG,連接CE、BG,則線段CE、BG有什么關系?說明理由.
靈活運用:

(3)如圖3,已知△ABC中,∠ABC=45°,AB=2 ,BC=3,過點A作EA⊥AC,垂足為A,且滿足AC=AE,求BE的長.

查看答案和解析>>

同步練習冊答案