【題目】綜合題
(1)如圖1,把△ABC沿DE折疊,使點(diǎn)A落在點(diǎn)A’處,試探索∠1+∠2與∠A的關(guān)系.(不必證明).

(2)如圖2,BI平分∠ABC,CI平分∠ACB,把△ABC折疊,使點(diǎn)A與點(diǎn)I重合,若∠1+∠2=130°,求∠BIC的度數(shù);

(3)如圖3,在銳角△ABC中,BF⊥AC于點(diǎn)F,CG⊥AB于點(diǎn)G,BF、CG交于點(diǎn)H,把△ABC折疊使點(diǎn)A和點(diǎn)H重合,試探索∠BHC與∠1+∠2的關(guān)系,并證明你的結(jié)論.

【答案】
(1)解:∠1+∠2=2∠A
(2)解:由(1)∠1+∠2=2∠A,得2∠A=130°,∴∠A=65°

∵IB平分∠ABC,IC平分∠ACB,

∴∠IBC+∠ICB= (∠ABC+∠ACB)

= (180°﹣∠A)=90°﹣ ∠A,

∴∠BIC=180°﹣(∠IBC+∠ICB),

=180°﹣(90°﹣ ∠A)=90°+ ×65°=122.5°


(3)解:∵BF⊥AC,CG⊥AB,∴∠AFH+∠AGH=90°+90°=180°,

∠FHG+∠A=180°,∴∠BHC=∠FHG=180°﹣∠A,由(1)知∠1+∠2=2∠A,

∴∠A= (∠1+∠2),

∴∠BHC=180°﹣ (∠1+∠2)


【解析】(1)根據(jù)翻折變換的性質(zhì)以及三角形內(nèi)角和定理以及平角的定義求出即可;(2)根據(jù)三角形角平分線(xiàn)的性質(zhì)得出∠IBC+∠ICB=90°﹣ ∠A,得出∠BIC的度數(shù)即可;(3)根據(jù)翻折變換的性質(zhì)以及垂線(xiàn)的性質(zhì)得出,∠AFH+∠AGH=90°+90°=180°,進(jìn)而求出∠A= (∠1+∠2),即可得出答案.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解三角形的內(nèi)角和外角的相關(guān)知識(shí),掌握三角形的三個(gè)內(nèi)角中,只可能有一個(gè)內(nèi)角是直角或鈍角;直角三角形的兩個(gè)銳角互余;三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和;三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角,以及對(duì)翻折變換(折疊問(wèn)題)的理解,了解折疊是一種對(duì)稱(chēng)變換,它屬于軸對(duì)稱(chēng),對(duì)稱(chēng)軸是對(duì)應(yīng)點(diǎn)的連線(xiàn)的垂直平分線(xiàn),折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和角相等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年體育中考中,我班一學(xué)習(xí)小組6名學(xué)生的體育成績(jī)?nèi)缦卤,則這組學(xué)生的體育成績(jī)的眾數(shù),中位數(shù)依次為(  。

成績(jī)(分)

47

48

50

人數(shù)

2

3

1

A. 48,48 B. 48,47.5 C. 3,2.5 D. 3,2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,則下面結(jié)論錯(cuò)誤的是(

A.BF=EF
B.DE=EF
C.∠EFC=45°
D.∠BEF=∠CBE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)規(guī)定學(xué)生的學(xué)期體育成績(jī)滿(mǎn)分為100分,其中課外體育占20%,期中考試成績(jī)占30%,期末考試成績(jī)占50%.小彤的三項(xiàng)成績(jī)(百分制)依次為95、9088,則小彤這學(xué)期的體育成績(jī)?yōu)?/span>( )

A. 89 B. 90 C. 92 D. 93

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在所給網(wǎng)格圖(每小格均為邊長(zhǎng)是1的正方形)中完成下列各題:(用直尺畫(huà)圖)

(1)畫(huà)出格點(diǎn)△ABC(頂點(diǎn)均在格點(diǎn)上)關(guān)于直線(xiàn)DE對(duì)稱(chēng)的△A1B1C1;
(2)在DE上畫(huà)出點(diǎn)P,使PB1+PC最。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知數(shù)軸上點(diǎn)A表示的為8,B是數(shù)軸上一點(diǎn),且AB=14,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒5個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒.

(1)寫(xiě)出數(shù)軸上點(diǎn)B表示的數(shù) ,點(diǎn)P表示的數(shù) (用含t的代數(shù)式表示);

(2)動(dòng)點(diǎn)H從點(diǎn)B出發(fā),以每秒3個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),若點(diǎn)P、H同時(shí)出發(fā),問(wèn)點(diǎn)P運(yùn)動(dòng)多少秒時(shí)追上點(diǎn)H?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,則下面結(jié)論錯(cuò)誤的是(

A.BF=EF
B.DE=EF
C.∠EFC=45°
D.∠BEF=∠CBE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果4x2mxy+9y2是一個(gè)完全平方式,則m=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:∠MON=40°,OE平分∠MON,點(diǎn)A、B、C分別是射線(xiàn)OM、OE、ON上的動(dòng)點(diǎn)(A、B、C不與點(diǎn)O 重合),連接AC交射線(xiàn)OE于點(diǎn)D.設(shè)∠OAC=x°.

(1)如圖1,若AB∥ON,則
①∠ABO的度數(shù)是;
②當(dāng)∠BAD=∠ABD時(shí),x=;當(dāng)∠BAD=∠BDA時(shí),x=
(2)如圖2,若AB⊥OM,則是否存在這樣的x的值,使得△ADB中有兩個(gè)相等的角?若存在,求出x的值;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案