【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,則下列判斷中錯(cuò)誤的是
A.圖象的對(duì)稱軸是直線x=1 B.當(dāng)x>1時(shí),y隨x的增大而減小
C.一元二次方程ax2+bx+c=0的兩個(gè)根是-1,3 D.當(dāng)-1<x<3時(shí),y<0
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某小區(qū)業(yè)主委員會(huì)決定把一塊長(zhǎng)50m,寬30m的矩形空地建成健身廣場(chǎng),設(shè)計(jì)方案如圖所示,陰影區(qū)域?yàn)榫G化區(qū)(四塊綠化區(qū)為全等的矩形),空白區(qū)域?yàn)榛顒?dòng)區(qū),且四周的4個(gè)出口寬度相同,其寬度不小于14m,不大于26m,設(shè)綠化區(qū)較長(zhǎng)邊為xm,活動(dòng)區(qū)的面積為ym2
(1)直接寫(xiě)出:①用x的式子表示出口的寬度為 ;
②y與x的函數(shù)關(guān)系式及x的取值范圍 ;
(2)求活動(dòng)區(qū)的面積y的最大面積;
(3)預(yù)計(jì)活動(dòng)區(qū)造價(jià)為50元/m2,綠化區(qū)造價(jià)為40元/m2,如果業(yè)主委員會(huì)投資不得超過(guò)72000元來(lái)參與建造,當(dāng)x為整數(shù)時(shí),共有幾種建造方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE、BF相交于H,BF、AD的延長(zhǎng)線交于P.下面結(jié)論:
①,②∠A=∠BHE,③AB=BH,④△BHD∽△BDP.
請(qǐng)你把你認(rèn)為正確的結(jié)論的番號(hào)都填上 (填錯(cuò)一個(gè)該題得0分)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知O為坐標(biāo)原點(diǎn),拋物線y1=ax2+bx+c(a≠0)與x軸相交于點(diǎn)A(x1,0),B(x2,0),與y軸交于點(diǎn)C,且O,C兩點(diǎn)間的距離為3,x1x2<0,|x1|+|x2|=4,點(diǎn)A,C在直線y2=﹣3x+t上.
(1)當(dāng)y1隨著x的增大而增大時(shí),求自變量x的取值范圍;
(2)將拋物線y1向左平移n(n>0)個(gè)單位,記平移后y隨著x的增大而增大的部分為P,直線y2向下平移n個(gè)單位,當(dāng)平移后的直線與P有公共點(diǎn)時(shí),求2n2﹣5n的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,用長(zhǎng)20米的籬笆圍成一個(gè)一面靠墻的長(zhǎng)方形的菜園,設(shè)菜園的寬為x米,面積為y平方米.
(1)求y與x的函數(shù)關(guān)系式及自變量的取值范圍;
(2)怎樣圍才能使菜園的面積最大?最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=x2+bx+c(其中b,c為常數(shù),c>0)的頂點(diǎn)恰為函數(shù)y=2x和y=的其中一個(gè)交點(diǎn).則當(dāng)a2+ab+c>2a>時(shí),a的取值范圍是
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的解析式為y=-x2+4x,該二次函數(shù)交x軸于O、B兩點(diǎn),A為拋物線上一點(diǎn),且橫縱坐標(biāo)相等(原點(diǎn)除外),P為二次函數(shù)上一動(dòng)點(diǎn),過(guò)P作x軸垂線,垂足為D(a,0)(a>0),并與直線OA交于點(diǎn)C.
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)當(dāng)點(diǎn)P在線段OA上方時(shí),過(guò)P作x軸的平行線與線段OA相交于點(diǎn)E,求△PCE周長(zhǎng)的最大值及此時(shí)P點(diǎn)的坐標(biāo);
(3)當(dāng)PC=CO時(shí),求P點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,關(guān)于的分式方程.
(1)當(dāng),時(shí),求分式方程的解;
(2)當(dāng)時(shí),求為何值時(shí)分式方程無(wú)解:
(3)若,且、為正整數(shù),當(dāng)分式方程的解為整數(shù)時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在Rt△ABC中,∠C=90°,AC=4cm,BC=5cm,點(diǎn)D在BC上,且CD=3cm,現(xiàn)有兩個(gè)動(dòng)點(diǎn)P,Q分別從點(diǎn)A和點(diǎn)B同時(shí)出發(fā),其中點(diǎn)P以1cm/s的速度沿AC向終點(diǎn)C運(yùn)動(dòng);點(diǎn)Q以1.25cm/s的速度沿BC向終點(diǎn)C運(yùn)動(dòng),兩點(diǎn)到達(dá)終點(diǎn)后停止運(yùn)動(dòng)。過(guò)點(diǎn)P作PE∥BC交AD于點(diǎn)E,連結(jié)EQ,設(shè)動(dòng)點(diǎn)運(yùn)動(dòng)的時(shí)間為ts(t>0)。
(1) 連結(jié)DP,經(jīng)過(guò)1s后,四邊形EQDP能夠成為平行四邊形嗎? 請(qǐng)說(shuō)明理由;
(2) 當(dāng)t為何值時(shí),△EDQ為直角三角形?
(3) 如圖②,設(shè)點(diǎn)M是EQ的中點(diǎn),在點(diǎn)P、Q的整個(gè)運(yùn)動(dòng)過(guò)程中,試探究點(diǎn)M的運(yùn)動(dòng)路徑長(zhǎng)度是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com