【題目】已知:關(guān)于的一元二次方程是整數(shù)).

(1)求證:方程有兩個不相等的實數(shù)根;

(2)若方程的兩個實數(shù)根分別為(其中),設(shè),則是否為變量的函數(shù)?如果是,求出函數(shù)的解析式;如果不是,請說明理由.

【答案】(1)答案見解析;(2)答案見解析.

【解析】

1)根據(jù)一元二次方程的定義得到k≠0,再計算出判別式得到=2k-12,根據(jù)k為整數(shù)和非負(fù)數(shù)的性質(zhì)得到0,則根據(jù)判別式的意義即可得到結(jié)論;(2)根據(jù)根與系數(shù)的關(guān)系得x1+x2= ,x1x2= ,則根據(jù)完全平方公式變形得(x1-x22=x1+x22-4x1x2=,由于k為整數(shù),則2- 0,所以x2-x1=2-,則x2 =x1+2-,∴y= x1+2-

證明:根據(jù)題意得k≠0,

∵△=4k+12-4k3k+3=4k2-4k+1=2k-12

k為整數(shù),

2k-1≠0,

∴(2k-120,即0,

∴方程有兩個不相等的實數(shù)根;

解:y是變量k的函數(shù).

x1+x2=,x1x2=

∴(x1-x22=x1+x22-4x1x2=,

k為整數(shù),

∴則2- 0,所以x2-x1=2-,則x2 =x1+2-,

y= x1+2-k≠0的整數(shù)),

y是變量k的函數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)

(1)將其化成的形式_______________

(2)頂點坐標(biāo)_________對稱軸方程_______________;

(3)用五點法畫出二次函數(shù)的圖象;

(4) 當(dāng)時,寫出的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,點A(0),B(,0),C(0).D,E分別是線段ACCB上的點,CDCE.將△CDE繞點C逆時針旋轉(zhuǎn)一個角度α.

(1)α90°,在旋轉(zhuǎn)過程中當(dāng)點A,D,E在同一直線上時,連接AD,BE,如圖2.求證:ADBE,且ADBE

(2)α360°D,E恰好是線段ACCB上的中點,在旋轉(zhuǎn)過程中,當(dāng)DEAC時,求α的值及點E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,中,,以為直徑的⊙O于點

于點

1)求證:⊙O的切線;

2)若,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年,67日為端午節(jié).在端午節(jié)前夕,三位同學(xué)到某超市調(diào)研一種進(jìn)價為2元的粽子的銷售情況.請根據(jù)小麗提供的信息,解答小華和小明提出的問題.

小麗

每個定價3元,每天能賣出500個.若這種粽子的售價每上漲0.1元,其銷售量將減少10

小華

照你說,若要實現(xiàn)每天800元的銷售利潤,那該如何定價?別忘了,根據(jù)物價局規(guī)定,售價不能超過進(jìn)價的

小明

若按照物價局規(guī)定的最高售價,每天的利潤會超過800元嗎?請判斷并說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=6,AD=12,點E在AD邊上,且AE=8,EF⊥BE交CD于點F.

(1)求證:△ABE∽△DEF;

(2)求CF的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在南北方向的海岸線MN上,有A、B兩艘巡邏船,現(xiàn)均收到故障船c的求救信號.已知A、B兩船相距100(+3)海里,船C在船A的北偏東60°方向上,船C在船B的東南方向上,MN上有一觀測點D,測得船C正好在觀測點D的南偏東75°方向上.

(1)分別求出A與C,A與D之間的距離AC和AD(如果運算結(jié)果有根號,請保留根號).

(2)已知距觀測點D處200海里范圍內(nèi)有暗礁.若巡邏船A沿直線AC去營救船C,在去營救的途中有無觸暗礁危險?(參考數(shù)據(jù):≈1.41,≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了適合不同人群的口味,某商店對蘋果味、草莓味、牛奶味的糖果混合組裝成甲、乙兩種袋裝進(jìn)行銷售.甲種每袋裝有蘋果味、草莓味、牛奶味的糖果各10顆,乙種每袋裝有蘋果味糖果20顆,草莓味和牛奶味糖果各5.甲、乙兩種袋裝糖果每袋成本價分別是袋中各類糖果成本之和.已知每顆蘋果味的糖果成本價為0.4元,甲種袋裝糖果的售價為23.4元,利潤率為30%,乙種袋裝糖果每袋的利潤率為20%.若這兩種袋裝的銷售利潤率達(dá)到24%,則該公司銷售甲、乙兩種袋裝糖果的數(shù)量之比是__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的頂點H2,0),經(jīng)過點A1,1),與y軸交于點C

1)求拋物線的解析式;

2)如圖1,在線段OC(端點除外)上是否存在一點N,直線NA交拋物線于另一點B,滿足BCBN?若存在,請求出點N的坐標(biāo);若不存在,請說明理由;

3)如圖2,過點P(﹣3,0)作直線交拋物線于點F、G,FMx軸于MGNx軸于N,求PMPN的值.

查看答案和解析>>

同步練習(xí)冊答案