【題目】如圖,拋物線與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,拋物線的對(duì)稱軸交x軸于點(diǎn)D,已知,.
求拋物線的表達(dá)式;
在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使是以CD為腰的等腰三角形?如果存在,直接寫出P點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說明理由;
點(diǎn)E是線段BC上的一個(gè)動(dòng)點(diǎn),過點(diǎn)E作x軸的垂線與拋物線相交于點(diǎn)F,當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時(shí)E點(diǎn)的坐標(biāo).
【答案】(1);(2)存在,滿足條件的P點(diǎn)坐標(biāo)為或或;(3)當(dāng)時(shí),有最大值,最大值為,此時(shí)E點(diǎn)坐標(biāo)為.
【解析】
(1)利用待定系數(shù)法求出二次函數(shù)解析式即可;
(2)可設(shè)出P點(diǎn)坐標(biāo),從而可表示出PC、PD的長(zhǎng),由條件可得PC=CD或PD=CD,可得到關(guān)于P點(diǎn)坐標(biāo)的方程,可求得點(diǎn)P的坐標(biāo);
(3)根據(jù)拋物線的解析式求得B點(diǎn)的坐標(biāo),然后根據(jù)待定系數(shù)法求得直線BC的解析式,可設(shè)出點(diǎn)E的坐標(biāo),則可表示出點(diǎn)F的坐標(biāo),進(jìn)而表示出EF的長(zhǎng)度,則可表示出△CBF的面積,從而可表示出四邊形CDBF的面積,利用二次函數(shù)的性質(zhì),可求得其最大值及此時(shí)E點(diǎn)的坐標(biāo).
把,代入得,解得,
拋物線解析式為;
存在.
拋物線的對(duì)稱軸為直線,
則,
,
如圖1,當(dāng)時(shí),則;
當(dāng)時(shí),則,,
綜上所述,滿足條件的P點(diǎn)坐標(biāo)為或或;
當(dāng)時(shí),,解得,,則,
設(shè)直線BC的解析式為,
把,代入得,解得,
直線BC的解析式為,
設(shè),則,
,
,
而,
,
當(dāng)時(shí),有最大值,最大值為,此時(shí)E點(diǎn)坐標(biāo)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長(zhǎng)為8的正方形ABCD中,點(diǎn)O為AD上一動(dòng)點(diǎn)(4<OA<8),以O為圓心,OA的長(zhǎng)為半徑的圓交邊CD于點(diǎn)M,連接OM,過點(diǎn)M作圓O的切線交邊BC于點(diǎn)N.
(1)求證:△ODM∽△MCN;
(2)設(shè)DM=x,求OA的長(zhǎng)(用含x的代數(shù)式表示);
(3)在點(diǎn)O運(yùn)動(dòng)的過程中,設(shè)△CMN的周長(zhǎng)為p,試用含x的代數(shù)式表示p,你能發(fā)現(xiàn)怎樣的結(jié)論?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小麗老師家有一片80棵桃樹的桃園,現(xiàn)準(zhǔn)備多種一些桃樹提高桃園產(chǎn)量,但是如果多種樹,那么樹之間的距離和每棵樹所受光照就會(huì)減少,單棵樹的產(chǎn)量隨之降低.若該桃園每棵桃樹產(chǎn)桃(千克)與增種桃樹(棵)之間的函數(shù)關(guān)系如圖所示.
(1)求與之間的函數(shù)關(guān)系式;
(2)在投入成本最低的情況下,增種桃樹多少棵時(shí),桃園的總產(chǎn)量可以達(dá)到6750千克?
(3)如果增種的桃樹 (棵)滿足: ,請(qǐng)你幫小麗老師家計(jì)算一下,桃園的總產(chǎn)量最少是多少千克,最多又是多少千克?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,第1個(gè)正方形ABCD的位置如圖所示,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)D的坐標(biāo)為(0,2).延長(zhǎng)CB交x軸于點(diǎn)A1,作第2個(gè)正方形A1B1C1C;延長(zhǎng)C1B1交x軸于點(diǎn)A2,作第3個(gè)正方形A2B2C2C1…按這樣的規(guī)律進(jìn)行下去,第2011個(gè)正方形的面積為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c(a≠0)圖象的一部分,直線x=-1是對(duì)稱軸,有下列判斷:①b-2a=0;②4a-2b+c<0;③a-b+c=-9a;④若(-3,y1),(,y2)是拋物線上兩點(diǎn),則y1>y2,其中正確的個(gè)數(shù)是( )
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y=的圖象在第二象限內(nèi),點(diǎn)A是圖象上的任意一點(diǎn),AM⊥x軸于點(diǎn)M,O是原點(diǎn).若S△AOM=3,求該反比例函數(shù)的解析式,并寫出自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,AB的垂直平分線DE與AC所在的直線相交于點(diǎn)E,垂足為D,連接BE.已知AE=5,tan∠AED=,求BE+CE的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)D是⊙O外一點(diǎn),AB=AD,BD交⊙O于點(diǎn)C,AD交⊙O于點(diǎn)E,點(diǎn)P是AC的延長(zhǎng)線上一點(diǎn),連接PB、PD,且PD⊥AD
(1)判斷PB與⊙O的位置關(guān)系,并說明理由;
(2)連接CE,若CE=3,AE=7,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為4,點(diǎn)M,N,P分別為AD,BC,CD的中點(diǎn).現(xiàn)從點(diǎn)P觀察線段AB,當(dāng)長(zhǎng)度為1的線段l(圖中的黑粗線)以每秒1個(gè)單位長(zhǎng)的速度沿線段MN從左向右運(yùn)動(dòng)時(shí),l將阻擋部分觀察視線,在△PAB區(qū)域內(nèi)形成盲區(qū).設(shè)l的右端點(diǎn)運(yùn)動(dòng)到M點(diǎn)的時(shí)刻為0,用t(秒)表示l的運(yùn)動(dòng)時(shí)間.
(1)請(qǐng)你針對(duì)圖(1)(2)(3)中l位于不同位置的情形分別畫出在△PAB內(nèi)相應(yīng)的盲區(qū),并在盲區(qū)內(nèi)涂上陰影.
(2)設(shè)△PAB內(nèi)的盲區(qū)面積是y(平方單位),在下列條件下,求出用t表示y的函數(shù)關(guān)系式.
①1≤t≤2;
②2≤t≤3;
③3≤t≤4.
根據(jù)①~③中得到的結(jié)論,請(qǐng)你簡(jiǎn)單概括y隨t變化而變化的情況.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com