【題目】附加題:
探究題:我們知道等腰三角形的兩個底角相等,如下面每個圖中的△ABC中AB、BC是兩腰,所以∠BAC=∠BCA.利用這條性質(zhì),解決下面的問題:
已知下面的正多邊形中,相鄰四個頂點連接的對角線交于點O它們所夾的銳角為a.如圖:
正五邊形α=_____;正六邊形α=______;正八邊α=_____;當(dāng)正多邊形的邊數(shù)是n時,α=______.
【答案】α5=172°;α6=60°,α8=45°,α=.
【解析】
如圖,延長BA到F,根據(jù)多邊形外角和為360°可得∠EAF的度數(shù),根據(jù)正多邊形內(nèi)角和可得∠ABC=∠BAE=108°,利用等腰三角形的性質(zhì)可得∠BAC=∠BCA=∠ABE=∠BEA=36°,利用三角形外角性質(zhì)可得α=∠EAF,即可得正五邊形中α的值,討論可得α6、α8的值,根據(jù)所得規(guī)律即可得當(dāng)正多邊形的邊數(shù)是n時α的值.
如圖,延長BA到F,
∵∠EAF是正五邊形ABCDE的外角,
∴∠EAF=360°÷5=72°,
∵五邊形ABCDE是正五邊形,
∴AB=BC=AE,∠ABC=∠BAE=(5-2)×180°÷5=108°,
∴∠BAC=∠BCA=∠ABE=∠BEA==36°,
∵α=∠ABE+∠BAC,∠EAF=∠ABE+∠AEB,
∴α=∠EAF=72°,
同理:α6=360°÷6=60°,α8=360°÷8=45°,
當(dāng)正多邊形的邊數(shù)是n時,α=.
故答案為36°;60°;45°;
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖(a)所示,點是正方形內(nèi)的一點,把繞點順時針方向旋轉(zhuǎn),使點與點重合,點的對應(yīng)點是.若,,,求的度數(shù).
(2)如圖(b)所示,點是等邊三角形內(nèi)的一點,若,,,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司為了擴大經(jīng)營,決定購進6臺機器用于生產(chǎn)某活塞.現(xiàn)有甲、乙兩種機器供選擇,其中每種機器的價格和每臺機器日生產(chǎn)活塞的數(shù)量如下表所示.經(jīng)過預(yù)算,本次購買機器所耗資金不能超過34萬元.
甲 | 乙 | |
價格(萬元/臺) | 7 | 5 |
每臺日產(chǎn)量(個) | 100 | 60 |
(1)按該公司要求可以有幾種購買方案?
(2)如果該公司購進的6臺機器的日生產(chǎn)能力不能低于380個,那么為了節(jié)約資金應(yīng)選擇什么樣的購買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某縣教育行政部門為了了解八年級學(xué)生每學(xué)期參加綜合實踐活動的情況,隨機抽樣調(diào)查了該縣八年級學(xué)生一個學(xué)期參加綜合實踐活動的天數(shù),并用得到的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計圖(如圖).
請你根據(jù)圖中提供的信息,回答下列問題:
(1)求出參加抽樣調(diào)查的八年級學(xué)生人數(shù),并將頻數(shù)直方圖補充完整.
(2)在這次抽樣調(diào)查中,眾數(shù)和中位數(shù)分別是多少?
(3)如果該縣共有八年級學(xué)生人,請你估計“活動時間不少于天”的大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題發(fā)現(xiàn):如圖,在中,,為邊所在直線上的動點(不與點、重合),連結(jié),以為邊作,且,根據(jù),得到,結(jié)合,得出,發(fā)現(xiàn)線段與的數(shù)量關(guān)系為,位置關(guān)系為;
(1)探究證明:如圖,在和中,,,且點在邊上滑動(點不與點、重合),連接.
①則線段,,之間滿足的等量關(guān)系式為_____;
②求證: ;
(2)拓展延伸:如圖,在四邊形中,.若,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點D從點C出發(fā)沿CA方向以4cm/秒的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以2cm/秒的速度向點B勻速運動,當(dāng)其中一個動點到達(dá)終點時,另一個動點也隨之停止運動.設(shè)點D、E運動的時間是t秒(0<t≤15).過點D作DF⊥BC于點F,連接DE,EF.
(1)當(dāng)t為何值時,DF=DA?
(2)當(dāng)t為何值時,△ADE為直角三角形?請說明理由.
(3)是否存在某一時刻t,使點F在線段AC的中垂線上,若存在,請求出t值,若不存在,請說明理由.
(4)請用含有t式子表示△DEF的面積,并判斷是否存在某一時刻t,使△DEF的面積是△ABC面積的,若存在,請求出t值,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,,AC=AD.給出下列條件: ①AB=AE;②BC=ED;③;④ .其中能使的條件為__________ (注:把你認(rèn)為正確的答案序號都填上).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對垃圾進行分類投放,能有效提高對垃圾的處理和再利用,減少污染,保護環(huán)境.為了了解同學(xué)們對垃圾分類知識的了解程度,增強同學(xué)們的環(huán)保意識,普及垃圾分類及投放的相關(guān)知識,某校數(shù)學(xué)興趣小組的同學(xué)們設(shè)計了“垃圾分類知識及投放情況”問卷,并在本校隨機抽取若干名同學(xué)進行了問卷測試,根據(jù)測試成績分布情況,他們將全部測試成績分成、、、四組,繪制了如下統(tǒng)計圖表:
“垃圾分類知識及投放情況”問卷測試成績統(tǒng)計圖表
組別 | 分?jǐn)?shù)/分 | 頻數(shù) | 各組總分/分 |
依據(jù)以上統(tǒng)計信息,解答下列問題:
(1)求得_____,______;
(2)這次測試成績的中位數(shù)落在______組;
(3)求本次全部測試成績的平均數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一條筆直的公路上依次有A,C,B三地,甲、乙兩人同時出發(fā),甲從A地騎自行車去B地,途經(jīng)C地休息1分鐘,繼續(xù)按原速騎行至B地,甲到達(dá)B地后,立即按原路原速返回A地;乙步行從B地前往A地.甲、乙兩人距A地的路程y(米)與時間x(分)之間的函數(shù)關(guān)系如圖所示,請結(jié)合圖象解答下列問題:
(1)請寫出甲的騎行速度為 米/分,點M的坐標(biāo)為 ;
(2)求甲返回時距A地的路程y與時間x之間的函數(shù)關(guān)系式(不需要寫出自變量的取值范圍);
(3)請直接寫出兩人出發(fā)后,在甲返回A地之前,經(jīng)過多長時間兩人距C地的路程相等.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com