【題目】在一條筆直的公路上依次有A,C,B三地,甲、乙兩人同時出發(fā),甲從A地騎自行車去B地,途經(jīng)C地休息1分鐘,繼續(xù)按原速騎行至B地,甲到達B地后,立即按原路原速返回A地;乙步行從B地前往A地.甲、乙兩人距A地的路程y(米)與時間x(分)之間的函數(shù)關系如圖所示,請結合圖象解答下列問題:

(1)請寫出甲的騎行速度為   米/分,點M的坐標為   ;

(2)求甲返回時距A地的路程y與時間x之間的函數(shù)關系式(不需要寫出自變量的取值范圍);

(3)請直接寫出兩人出發(fā)后,在甲返回A地之前,經(jīng)過多長時間兩人距C地的路程相等.

【答案】(1)240,(6,1200);(2)y=﹣240x+2640;(3)經(jīng)過4分鐘或6分鐘或8分鐘時兩人距C地的路程相等.

【解析】

(1)根據(jù)函數(shù)圖象得出AB兩地的距離,由行程問題的數(shù)量關系由路程時間=速度就可以求出結論;

(2)先由行程問題的數(shù)量關系求出M、N的坐標,yx之間的函數(shù)關系式為y=kx+b,由待定系數(shù)法就可以求出結論;

(3) 設甲返回A地之前,經(jīng)過x分兩人距C地的路程相等,可得乙的速度:1200÷20=60(米/分),分別分當0<x≤3時當3<x﹣1時x≤6時當x=6時當x>6時5種情況討論可得經(jīng)過多長時間兩人距C地的路程相等.

(1)由題意得:甲的騎行速度為: =240(米/分),

240×(11﹣1)÷2=1200(米),

則點M的坐標為(6,1200),

故答案為:240,(6,1200);

(2)設MN的解析式為:y=kx+b(k≠0),

∵y=kx+b(k≠0)的圖象過點M(6,1200)、N(11,0),

,

解得,

直線MN的解析式為:y=﹣240x+2640;

即甲返回時距A地的路程y與時間x之間的函數(shù)關系式:y=﹣240x+2640;

(3)設甲返回A地之前,經(jīng)過x分兩人距C地的路程相等,

乙的速度:1200÷20=60(米/分),

如圖1所示:∵AB=1200,AC=1020,

∴BC=1200﹣1020=180,

分5種情況:

當0<x≤3時,1020﹣240x=180﹣60x,

x=>3,

此種情況不符合題意;

當3<x<﹣1時,即3<x<,甲、乙都在A、C之間,

∴1020﹣240x=60x﹣180,

x=4,

<x≤6時,甲在B、C之間,乙在A、C之間,

∴240x﹣1020=60x﹣180,

x=,

此種情況不符合題意;

當x=6時,甲到B地,距離C地180米,

乙距C地的距離:6×60﹣180=180(米),

即x=6時兩人距C地的路程相等,

當x6時,甲在返回途中,

當甲在B、C之間時,180﹣[240(x﹣1)﹣1200]=60x﹣180,x=6,

此種情況不符合題意,

當甲在A、C之間時,240(x﹣1)﹣1200﹣180=60x﹣180,

x=8,

綜上所述,在甲返回A地之前,經(jīng)過4分鐘或6分鐘或8分鐘時兩人距C地的路程相等.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】附加題:

探究題:我們知道等腰三角形的兩個底角相等,如下面每個圖中的ABCAB、BC是兩腰,所以∠BAC=BCA.利用這條性質(zhì),解決下面的問題:

已知下面的正多邊形中,相鄰四個頂點連接的對角線交于點O它們所夾的銳角為a.如圖:

正五邊形α=_____;正六邊形α=______;正八邊α=_____;當正多邊形的邊數(shù)是n時,α=______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】感知:如圖,平分,易知:

探究:(1)如圖,平分.求證:

應用:(2)在圖中,平分,如果,則____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】矩形ABCD中,AB=6,AD=8,點M在對角線AC上,且AM:MC=2:3,過點M作EFAC交AD于點E,交BC于點F.在AC上取一點P,使∠MEP=∠EAC,則AP的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】每個小方格都是邊長為1個單位長度的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,

(1)寫出A、B、C的坐標.

(2)以原點O為中心,將△ABC圍繞原點O逆時針旋轉(zhuǎn)180°得到△A1B1C1,畫出△A1B1C1

(3)求(2)中C到C1經(jīng)過的路徑以及OB掃過的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,∠BAC30°,EAB邊的中點,以BE為邊作等邊BDE,連接ADCD

1)求證:ADCD;

2)①畫圖:在AC邊上找一點H,使得BH+EH最。ㄒ螅簩懗鲎鲌D過程并畫出圖形,不用說明作圖依據(jù));

②當BC2時,求出BH+EH的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,MBC上一點,FAM的中點,EF⊥AM,垂足為F,交AD的延長線于點E,交DC于點N

1)求證:△ABM∽△EFA;

2)若AB=12BM=5,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】情境觀察:

如圖1,△ABC中,AB=AC,∠BAC=45°,CDABAEBC,垂足分別為DECDAE交于點F

①寫出圖1中所有的全等三角形 ;

②線段AF與線段CE的數(shù)量關系是

問題探究:

如圖2,△ABC中,∠BAC=45°AB=BC,AD平分∠BAC,ADCD,垂足為D,ADBC交于點E

求證:AE=2CD

拓展延伸:

如圖3,△ABC中,∠BAC=45°AB=BC,點DAC上,∠EDC= BAC,DECE,垂足為E,DEBC交于點F.求證:DF=2CE

要求:請你寫出輔助線的作法,并在圖3中畫出輔助線,不需要證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O△ABC的外接圓,AB為直徑,∠BAC的平行線交⊙O與點D,過點D的切線分別交ABAC的延長線與點E、F

1)求證:AF⊥EF

2)小強同學通過探究發(fā)現(xiàn):AF+CF=AB,請你幫忙小強同學證明這一結論.

查看答案和解析>>

同步練習冊答案