【題目】如圖,AC是⊙O的直徑,點(diǎn)D是⊙O 上一點(diǎn),⊙O的切線CBAD的延長(zhǎng)線交于點(diǎn)B,點(diǎn)F是直徑AC上一點(diǎn),連接DF并延長(zhǎng)交⊙O于點(diǎn)E,連接AE.

(1)求證:∠ABC=AED;

(2)連接BF,若AD=,AF=6,tanAED=,求BF的長(zhǎng).

【答案】(1)證明見解析;(2)2.

【解析】

(1)直接利用圓周角定理以及切線的性質(zhì)定理得出∠ACD=ABC,進(jìn)而得出答案;

(2)首先得出DC的長(zhǎng),即可得出FC的長(zhǎng),再利用已知得出BC的長(zhǎng),結(jié)合勾股定理求出答案.

(1)證明:連接DC,

AC是⊙O的直徑,

∴∠BDC=90°,

∴∠ABC+BCD=90°,

∵⊙O的切線CBAD的延長(zhǎng)線交于點(diǎn)B,

∴∠BCA=90°,

∴∠ACD+BCD=90°,

∴∠ACD=ABC,

∴∠ABC=AED;

(2)解:連接BF,

∵在RtADC中,AD=,tanAED=

tanACD==,

DC=AD=,

AC==8,

AF=6,

CF=AC﹣AF=8﹣6=2,

∵∠ABC=AED,

tanABC==,

=,

解得:BD=

BC=6,

BF==2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)軸正半軸上,以為邊作等邊,,其中是方程的解.

1)求點(diǎn)的坐標(biāo).

2)如圖1,點(diǎn)軸正半軸上,以為邊在第一象限內(nèi)作等邊,連并延長(zhǎng)交軸于點(diǎn),求的度數(shù).

3)如圖2,若點(diǎn)軸正半軸上一動(dòng)點(diǎn),點(diǎn)在點(diǎn)的右邊,連,以為邊在第一象限內(nèi)作等邊,連并延長(zhǎng)交軸于點(diǎn),當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),的值是否發(fā)生變化?若不變,求其值;若變化,求出其變化的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)(x+1)2-3=0; (2)2x2-3=5x;

(3)3x2-6x+2=0 ; (4)9(x-2)2-4x2=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某部隊(duì)將在指定山區(qū)進(jìn)行軍事演習(xí),為了使道路便于部隊(duì)重型車輛通過(guò),部隊(duì)工兵連接到搶修一段長(zhǎng)3600米道路的任務(wù),按原計(jì)劃完成總?cè)蝿?wù)的后,為了讓道路盡快投入使用,工兵連將工作效率提高了50%,一共用了10小時(shí)完成任務(wù).

1按原計(jì)劃完成總?cè)蝿?wù)的時(shí),已搶修道路   米;

2求原計(jì)劃每小時(shí)搶修道路多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將函數(shù)的圖象沿y軸向上平移得到新函數(shù)圖象,其中原函數(shù)圖象上的兩點(diǎn)A(1,m)、B(4,n)平移后對(duì)應(yīng)新函數(shù)圖象上的點(diǎn)分別為點(diǎn)A′、B′.若陰影部分的面積為6,則新函數(shù)的表達(dá)式為(  )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABN△ACM位置如圖所示,AB=AC,AD=AE,∠1=∠2

1)求證:BD=CE;

2)求證:∠M=∠N

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校開展“書香校園”活動(dòng)以來(lái),受到同學(xué)們的廣泛關(guān)注,學(xué)位為了解全校學(xué)生課外閱讀的情況,隨機(jī)調(diào)查了部分學(xué)生在一周內(nèi)借閱圖書的次數(shù),并制成如下不完整的統(tǒng)計(jì)圖表.

請(qǐng)你根據(jù)統(tǒng)計(jì)圖表中的信息,解答下列問(wèn)題:

1=___________,=_____________;

2)該調(diào)查統(tǒng)計(jì)數(shù)據(jù)的中位數(shù)是_________,眾數(shù)是__________

3)請(qǐng)計(jì)算扇形統(tǒng)計(jì)圖中“3次”所對(duì)應(yīng)扇形的圓心角的度數(shù);

4)若該校共有2000名學(xué)生,根據(jù)調(diào)查結(jié)果,估計(jì)該校學(xué)生在一周內(nèi)借閱圖書“4次及以上”的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果拋物線C1的頂點(diǎn)在拋物線C2上,同時(shí),拋物線C2的頂點(diǎn)在拋物線C1上,那么,我們稱拋物線C1與拋物線C2互相依存.

(1)已知拋物線①:y=﹣2x2+4x+3與拋物線②:y=2x2+4x﹣1,請(qǐng)判斷拋物線與拋物線是否互相依存,并說(shuō)明理由.

(2)將拋物線C1:y=﹣2x2+4x+3沿x軸翻折,再向右平移m(m0)個(gè)單位,得到拋物線C2,若拋物線C1與C2互相依存,求m的值.

(3)試問(wèn):如果對(duì)稱軸不同的兩條拋物線(二次函數(shù)圖象)互相依存,那么它們的函數(shù)表達(dá)式中的二次項(xiàng)系數(shù)之間有什么數(shù)量關(guān)系?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小美周末去公園玩,發(fā)現(xiàn)公園一角有一種守株待兔的游戲,該游戲老板說(shuō)明游戲規(guī)則如下:提供一只兔子和一個(gè)有A、B、C、D、E五個(gè)出口的兔籠,而且籠內(nèi)的兔子從每個(gè)出口走出兔籠的機(jī)會(huì)是均等的,玩家只能將兔子從A、B兩個(gè)出入口放兔子,如果兔子進(jìn)籠子后從開始進(jìn)入的入口出來(lái),則玩家可獲得價(jià)值5元的小兔玩具一只,否則,應(yīng)付3元的參與費(fèi)用.

(1)用作表或樹狀圖列出小美參與游戲的所有可能結(jié)果,并求出小美得到玩具兔子的概率.

(2)假設(shè)有100人玩這個(gè)游戲,估計(jì)老板約賺多少錢.

查看答案和解析>>

同步練習(xí)冊(cè)答案