咖菲爾德(Garfeild,1881年任美國第二十屆總統(tǒng))利用下圖證明了勾股定理(1876年4月1日,發(fā)表在《新英格蘭教育日志》上),現(xiàn)在請你嘗試他的證明過程.

解:由題可知梯形面積為(a+b)(a+b);
此梯形的面積還可以看成是三個直角三角形的面積和,即(ab×2+c2).
因此(a+b)(a+b)=(ab×2+c2
即a2+b2=c2
分析:因為梯形的上底為a,下底為b,高為(a+b),則它的面積可表示為(a+b)•(a+b);此梯形的面積還可以看成是三個直角三角形的面積和,即(ab×2+c2);則(a+b)(a+b)=(ab×2+c2)進而得出即可.
點評:此題主要考查了勾股定理的證明,主要應用梯形的面積公式和三角形的面積公式得出是解題關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

美國第二十屆總統(tǒng)加菲爾德也曾經(jīng)給出了勾股定理的一種證明方法,如圖,他用兩個全等的直角三角形和一個等腰直角三角形拼出了一個直角梯形,請你利用此圖形驗證勾股定理.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)如圖1是一個重要公式的幾何解釋,請你寫出這個公式
(a+b)2=a2+2ab+b2
(a+b)2=a2+2ab+b2
;在推得這個公式的過程中,主要運用了
C
C

A.分類討論思想     B.整體思想     C.數(shù)形結合思想      D.轉化思想
(2)如圖2,Rt△ABC≌Rt△CDE,∠B=∠D=90°,且B,C,D在同一直線上.
求證:∠ACE=90°;
(3)伽菲爾德(1881年任美國第20屆總統(tǒng))利用(1)中的公式和圖2證明了勾股定理(發(fā)表在1876年4月1日的《新英格蘭教育日志》上),請你嘗試該證明過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

咖菲爾德(Garfeild,1881年任美國第二十屆總統(tǒng))利用下圖證明了勾股定理(1876年4月1日,發(fā)表在《新英格蘭教育日志》上),現(xiàn)在請你嘗試他的證明過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

教材第66頁探索平方差公式時設置了如下情境:邊長為b的小正方形紙片放置在邊長為a的大正方形紙片上(如圖①),你能通過計算未蓋住部分的面積得到公式(a+b)(a-b)=a2-b2嗎?(不必證明)

(1)如果將小正方形的一邊延長(如圖②),是否也能推導公式?請完成證明.
(2)面積法除了可以幫助我們記憶公式,還可以直觀地推導或驗證公式,俗稱“無字證明”,例如,著名的趙爽弦圖(如圖③,其中四個直角三角形較大的直角邊長都為a,較小的直角邊長都為b,斜邊長都為c),大正方形的面積可以表示為c2,也可以表示為4×
12
ab+(a-b)2,由此推導出重要的勾股定理:a2+b2=c2.圖④為美國第二十任總統(tǒng)伽菲爾德的“總統(tǒng)證法”,請你完成證明.
(3)試構造一個圖形,使它的面積能夠解釋(a-2b)2=a2-4ab+4b2,畫在下面的網(wǎng)格(圖⑤)中,并標出字母a、b所表示的線段.

查看答案和解析>>

同步練習冊答案