【題目】如圖所示,△ABP與△CDP是兩個全等的等邊三角形,且PA⊥PD,有下列四個結(jié)論:①∠PBC=15°,②AD∥BC,③PC⊥AB,④四邊形ABCD是軸對稱圖形,其中正確的個數(shù)為(
A.1個
B.2個
C.3個
D.4個

【答案】D
【解析】解:根據(jù)題意,∠BPC=360°﹣60°×2﹣90°=150° ∵BP=PC,
∴∠PBC=(180°﹣150°)÷2=15°,
①正確;
根據(jù)題意可得四邊形ABCD是軸對稱圖形,
∴②AD∥BC,③PC⊥AB正確;
④也正確.
所以四個命題都正確.
故選D.
【考點精析】通過靈活運用全等三角形的性質(zhì)和等邊三角形的性質(zhì),掌握全等三角形的對應(yīng)邊相等; 全等三角形的對應(yīng)角相等;等邊三角形的三個角都相等并且每個角都是60°即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A1,A2,A3…都在x軸上,點B1,B2,B3…都在直線上,△OA1B1,△B1A1A2,△B2B1A2,△B2A2A3,△B3B2A3…都是等腰直角三角形,且OA1=1,則點B2015的坐標是(

A.(, B.( C.(, D.(

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),菱形ABCD對角線AC、BD的交點O是四邊形EFGH對角線FH的中點,四個頂點A、B、C、D分別在四邊形EFGH的邊EF、FG、GH、HE上.

(1)求證:四邊形EFGH是平行四邊形;

(2)如圖(2)若四邊形EFGH是矩形,當AC與FH重合時,已知,且菱形ABCD的面積是20,求矩形EFGH的長與寬.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】代數(shù)式a3a2化簡后的結(jié)果是( 。

A.aB.a5C.a6D.a9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】x=5是方程ax+3bx﹣10=0的解,則3a+9b的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市用3000元購進某種干果銷售,由于銷售狀況良好,超市又調(diào)撥9000元資金購進該種干果,但這次的進價比第一次的進價提高了20%,購進干果數(shù)量是第一次的2倍還多300千克,如果超市按每千克9元的價格出售,當大部分干果售出后,余下的600千克按售價的8折售完.
(1)該種干果的第一次進價是每千克多少元?
(2)超市銷售這種干果共盈利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列正確的是(
A.﹣(﹣21)<+(﹣21)
B. ??
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列方程或方程組:
(1)x﹣4=3
(2)﹣(x﹣3)=3(2﹣5x)
(3)
(4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們將在直角坐標系中圓心坐標和半徑均為整數(shù)的圓稱為“整圓”.如圖,直線l:與x軸、y軸分別交于A、B,∠OAB=30°,點P在x軸上,⊙P與l相切,當P在線段OA上運動時,使得⊙P成為整圓的點P個數(shù)是(

A.6 B.8 C.10 D.12

查看答案和解析>>

同步練習(xí)冊答案