【題目】在菱形中,,點(diǎn)是對(duì)角線(xiàn)上一動(dòng)點(diǎn),將線(xiàn)段繞點(diǎn)順時(shí)針旋轉(zhuǎn)120°到,連接,連接并延長(zhǎng),分別交于點(diǎn).
(1)求證:;
(2)已知,若的最小值為,求菱形的面積.
【答案】(1)證明見(jiàn)解析;(2)菱形的面積.
【解析】
(1)利用SAS證明;
(2)先求出,得到,故當(dāng)時(shí),最小,此時(shí)最小,根據(jù)MN=,求出PC=2,BC=2PC=4,再利用菱形的面積得到答案.
(1)證明:四邊形是菱形,且,
∴,
∴,
由旋轉(zhuǎn)的性質(zhì)得:
∴,
∴;
(2)連接AC,
∵四邊形ABCD是菱形,
∴AB=BC,
∵,
∴△ABC是等邊三角形,
∴AB=BC,
∵,
∴,
∴,
∴當(dāng)時(shí),最小,此時(shí)最小,
∵MN=,
∴PC=2,
∵∠DBC=,∠BPC=90°,
∴BC=2PC=4,
∴菱形的面積
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】思維啟迪:
(1)如圖1,,兩點(diǎn)分別位于一個(gè)池塘的兩端,小亮想用繩子測(cè)量,間的距離,但繩子不夠長(zhǎng),聰明的小亮想出一個(gè)辦法:先在地上取一個(gè)可以直接到達(dá)點(diǎn)的點(diǎn),連接,取的中點(diǎn)(點(diǎn)可以直接到達(dá)點(diǎn)),利用工具過(guò)點(diǎn)作交的延長(zhǎng)線(xiàn)于點(diǎn),此時(shí)測(cè)得,那么,間的距離是______.
思維探索:
(2)在和中,,,且,.將繞點(diǎn)順時(shí)針旋轉(zhuǎn),把點(diǎn)在邊上時(shí)的位置作為起始位置(此時(shí)點(diǎn)和點(diǎn)位于的兩側(cè)),設(shè)旋轉(zhuǎn)角為,連接,點(diǎn)是線(xiàn)段的中點(diǎn),連接,.
①如圖2,當(dāng)在起始位置時(shí),猜想:與的數(shù)量關(guān)系和位置關(guān)系分別是_______;_______.
②如圖3,當(dāng),點(diǎn)落在邊上,請(qǐng)判斷與的數(shù)量關(guān)系和位置關(guān)系,并證明你的結(jié)論.
③當(dāng)時(shí),若,,請(qǐng)直接寫(xiě)出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線(xiàn)y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為Q(2,﹣1),且與y軸交于點(diǎn)C(0,3),與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),點(diǎn)P是該拋物線(xiàn)上的一動(dòng)點(diǎn),從點(diǎn)C沿拋物線(xiàn)向點(diǎn)A運(yùn)動(dòng)(點(diǎn)P與A不重合),過(guò)點(diǎn)P作PD∥y軸,交AC于點(diǎn)D.
(1)求該拋物線(xiàn)的函數(shù)關(guān)系式;
(2)當(dāng)△ADP是直角三角形時(shí),求點(diǎn)P的坐標(biāo);
(3)在題(2)的結(jié)論下,若點(diǎn)E在x軸上,點(diǎn)F在拋物線(xiàn)上,問(wèn)是否存在以A、P、E、F為頂點(diǎn)的平行四邊形?若存在,求點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)中函數(shù)y與自變量x之間部分對(duì)應(yīng)值如下表所示,點(diǎn)在函數(shù)圖象上
x | … | 0 | 1 | 2 | 3 | … |
y | … | m | n | 3 | n | … |
則表格中的m=______;當(dāng)時(shí),和的大小關(guān)系為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=3.點(diǎn)E在線(xiàn)段BA上從B點(diǎn)以每秒1個(gè)單位的速度出發(fā)向A點(diǎn)運(yùn)動(dòng),F(xiàn)是射線(xiàn)CD上一動(dòng)點(diǎn),在點(diǎn)E、F運(yùn)動(dòng)的過(guò)程中始終保持EF=5,且CF>BE,點(diǎn)P是EF的中點(diǎn),連接AP.設(shè)點(diǎn)E運(yùn)動(dòng)時(shí)間為ts.
(1)在點(diǎn)E、F運(yùn)動(dòng)的過(guò)程中,AP的長(zhǎng)度存在一個(gè)最小值,當(dāng)AP的長(zhǎng)度取得最小值時(shí),點(diǎn)P的位置應(yīng)該在 .
(2)當(dāng)AP⊥EF時(shí),求出此時(shí)t的值
(3)以P為圓心作⊙P,當(dāng)⊙P與矩形ABCD三邊所在直線(xiàn)都相切時(shí),求出此時(shí)t的值,并指出此時(shí)⊙P的半徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于點(diǎn)A(﹣1,0),與y軸的交點(diǎn)B在(0,2)與(0,3)之間(不包括這兩點(diǎn)),對(duì)稱(chēng)軸為直線(xiàn)x=2.下列結(jié)論:abc<0;②9a+3b+c>0;③若點(diǎn)M(,y1),點(diǎn)N(,y2)是函數(shù)圖象上的兩點(diǎn),則y1<y2;④﹣<a<﹣.其中正確結(jié)論有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)B坐標(biāo)為(0,m)(m>0),點(diǎn)A在x軸正半軸上,直線(xiàn)AB經(jīng)過(guò)點(diǎn)A,B,且tan∠BAO=2.
(1)若點(diǎn)A的坐標(biāo)為(3,0),求直線(xiàn)AB的表達(dá)式;
(2)反比例函數(shù)y=的圖象與直線(xiàn)AB交于第一象限的C、D兩點(diǎn)(BD<BC),當(dāng)AD=2DB時(shí),求k1的值(用含m的式子表示);
(3)在(1)的條件下,設(shè)線(xiàn)段AB的中點(diǎn)為E,過(guò)點(diǎn)E作x軸的垂線(xiàn),垂足為M,交反比例函數(shù)y=的圖象于點(diǎn)F.分別連接OE、OF,當(dāng)△OEF與△OBE相似時(shí),請(qǐng)直接寫(xiě)出滿(mǎn)足條件的k2值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司選派兩人參加年度培訓(xùn),小穎媽媽、張阿姨、李阿姨和王阿姨都報(bào)了名,若從4人中隨機(jī)選派2人
(1)“小穎被選派”是 事件,“小穎媽媽被選派”是 事件.(填“不可能”或“必然“或“隨機(jī)”)
(2)試用畫(huà)樹(shù)狀圖或列表的方法表示這次選派所有可能的結(jié)果,并求出“小穎媽媽被選派”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,,為斜邊上的中線(xiàn);在中,,,且.連接,點(diǎn)、點(diǎn)分別為線(xiàn)段的中點(diǎn),連接.
如圖1,當(dāng)點(diǎn)在內(nèi)部時(shí),求證:
如圖2,當(dāng)點(diǎn)在外部時(shí),連接,判斷與的數(shù)量關(guān)系,并加以證明;
將圖1中的繞點(diǎn)旋轉(zhuǎn),在旋轉(zhuǎn)的過(guò)程中,請(qǐng)直接回答:
①中的與的數(shù)量關(guān)系是否發(fā)生了變化?
②若,當(dāng)點(diǎn)三點(diǎn)在同一條直線(xiàn)上時(shí),請(qǐng)直摟寫(xiě)出的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com