科目:初中數(shù)學 來源: 題型:
PA-PB |
PC |
PA+PB |
PC |
查看答案和解析>>
科目:初中數(shù)學 來源:2011年初中畢業(yè)升學考試(福建洛江區(qū)卷)數(shù)學 題型:解答題
(9分)如圖13,拋物線y=ax2+bx+c(a≠0)的頂點為(1,4),交x軸于A、B,交y軸于D,其中B點的坐標為(3,0)
(1)求拋物線的解析式
(2)如圖14,過點A的直線與拋物線交于點E,交y軸于點F,其中E點的橫坐標為2,若直線PQ為拋物線的對稱軸,點G為PQ上一動點,則x軸上是否存在一點H,使D、G、F、H四點圍成的四邊形周長最小.若存在,求出這個最小值及G、H的坐標;若不存在,請說明理由.
(3)如圖15,拋物線上是否存在一點T,過點T作x的垂線,垂足為M,過點M作直線MN∥BD,交線段AD于點N,連接MD,使△DNM∽△BMD,若存在,求出點T的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源:2012年初中畢業(yè)升學考試(四川內(nèi)江卷)數(shù)學(帶解析) 題型:解答題
如圖14,已知點A(-1,0),B(4,0),點C在y軸的正半軸上,且∠ACB=900,拋物線經(jīng)過A、B、C三點,其頂點為M.
求拋物線的解析式;
試判斷直線CM與以AB為直徑的圓的位置關系,并加以證明;
在拋物線上是否存在點N,使得?如果存在,那么這樣的點有幾個?如果不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源:2011年初中畢業(yè)升學考試(四川成都卷)數(shù)學解析版 題型:解答題
(本小題滿分10分)
如圖14①至圖14④中,兩平行線AB、CD音的距離均為6,點M為AB上一定點.
思考:如圖14①中,圓心為O的半圓形紙片在AB、CD之間(包括AB、CD),其直徑MN在AB上,MN=8,點P為半圓上一點,設∠MOP=α,當α=________度時,點P到CD的距離最小,最小值為____________.
探究一在圖14①的基礎上,以點M為旋轉中心,在AB、CD之間順時針旋轉該半圓形紙片,直到不能再轉動為止.如圖14②,得到最大旋轉角∠BMO=_______度,此時點N到CD的距離是______________.
探究二將圖14①中的扇形紙片NOP按下面對α的要求剪掉,使扇形紙片MOP繞點M在AB、CD之間順時針旋轉.
⑴如圖14③,當α=60°時,求在旋轉過程中,點P到CD的最小距離,并請指出旋轉角∠BMO的最大值:
⑵如圖14④,在扇形紙片MOP旋轉過程中,要保證點P能落在直線CD上,請確定α的取值范圍.
(參考數(shù)據(jù):sin49°=,cos41°=,tan37°=)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com