【題目】對于平面直角坐標(biāo)系xOy中的定點(diǎn)P和圖形F,給出如下定義:若在圖形F上存在一點(diǎn)N,使得點(diǎn)Q,點(diǎn)P關(guān)于直線ON對稱,則稱點(diǎn)Q是點(diǎn)P關(guān)于圖形F的定向?qū)ΨQ點(diǎn).
(1)如圖,,,,
①點(diǎn)P關(guān)于點(diǎn)B的定向?qū)ΨQ點(diǎn)的坐標(biāo)是 ;
②在點(diǎn),,中,______是點(diǎn)P關(guān)于線段AB的定向?qū)ΨQ點(diǎn).
(2)直線分別與x軸,y軸交于點(diǎn)G,H,⊙M是以點(diǎn)為圓心,為半徑的圓.
①當(dāng)時,若⊙M上存在點(diǎn)K,使得它關(guān)于線段GH的定向?qū)ΨQ點(diǎn)在線段GH上,求的取值范圍;
②對于,當(dāng)時,若線段GH上存在點(diǎn)J,使得它關(guān)于⊙M的定向?qū)ΨQ點(diǎn)在⊙M上,直接寫出b的取值范圍.
【答案】(1)①;②點(diǎn)C,D;(2)① 或;②.
【解析】
(1)①求出點(diǎn)P關(guān)于直線OB的對稱點(diǎn)G即可.
②求出OP,OC,OD,OE的長即可判斷.
(2)①求出兩種特殊位置b的值即可.如圖2中,作⊙M關(guān)于y軸的對稱圖形⊙M′,當(dāng)直線GH與⊙M′在第一象限相切時,設(shè)切點(diǎn)為P,連接PM′.如圖3中,以O為圓心,3為半徑作⊙O,當(dāng)直線GH與⊙O在第四象限點(diǎn)相切于點(diǎn)P時,連接OP,分別求出OH的值即可解決問題.
②如圖4中,設(shè)⊙M交x軸于K,T,則K(﹣1,0),T(5,0).求出兩種特殊位置b的值即可判斷.
解:(1)①如圖1中,
∵P(0,2),B(1,1),
∴點(diǎn)P關(guān)于OB的對稱點(diǎn)G(2,0),
故答案為:(2,0).
②∵點(diǎn)C(0,﹣2),D(1,﹣),E(2,﹣1),
∴OP=2,OD=2,OC=2,OE=,
∴OP=OD=OC,
∴點(diǎn)C,D是點(diǎn)P關(guān)于線段AB的定向?qū)ΨQ點(diǎn).
故答案為:點(diǎn)C,D.
(2)①如圖2中,作⊙M關(guān)于y軸的對稱圖形⊙M′,當(dāng)直線GH與⊙M′在第一象限相切時,設(shè)切點(diǎn)為P,連接PM′,
當(dāng)b>0時,
由題意得:tan∠HGO=,
∴∠PGM=30°,
∵PM′=1,∠MPG=90°,
∴MG=2MP=2,
∴OG=GM+OM=4,
∴OH=OGtan30°=,
當(dāng)直線經(jīng)過(-1,0)時, .
∴
若b<0時,
當(dāng)當(dāng)直線經(jīng)過(1,0)時, .
如圖3中,以O為圓心,3為半徑作⊙O,當(dāng)直線GH與O在第四象限點(diǎn)相切于點(diǎn)P時,連接OP,
同法可得OH=2,∴
觀察圖象可知滿足條件的b的值:﹣2≤b≤.
綜上所述,b的取值范圍是 或.
②如圖4中,設(shè)⊙M交x軸于K,T,則K(﹣1,0),T(5,0).
以O為圓心,5為半徑作⊙O,當(dāng)直線GH與⊙O在第二象限相切于點(diǎn)J時,
可得OH=,
此時直線GH的解析式為y=x+,
當(dāng)直線GH經(jīng)過點(diǎn)K(﹣1,0)時,0=﹣+b,
可得b=,
此時直線GH的解析式為y=x+,
觀察圖象可知滿足條件的b的值為:≤b≤.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c的頂點(diǎn)坐標(biāo)為(2,9),與y軸交于點(diǎn)A(0,5),與x軸交于點(diǎn)E、B.
(1)求二次函數(shù)y=ax2+bx+c的表達(dá)式;
(2)過點(diǎn)A作AC平行于x軸,交拋物線于點(diǎn)C,點(diǎn)P為拋物線上的一點(diǎn)(點(diǎn)P在AC上方),作PD平行于y軸交AB于點(diǎn)D,問當(dāng)點(diǎn)P在何位置時,四邊形APCD的面積最大?并求出最大面積;
(3)若點(diǎn)M在拋物線上,點(diǎn)N在其對稱軸上,使得以A、E、N、M為頂點(diǎn)的四邊形是平行四邊形,且AE為其一邊,求點(diǎn)M、N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,,,將矩形繞點(diǎn)按順時針方向旋轉(zhuǎn)得到矩形,點(diǎn)落在矩形的邊上的點(diǎn)處,連接,則點(diǎn)到的距離是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于平面直角坐標(biāo)系xOy中的定點(diǎn)P和圖形F,給出如下定義:若在圖形F上存在一點(diǎn)N,使得點(diǎn)Q,點(diǎn)P關(guān)于直線ON對稱,則稱點(diǎn)Q是點(diǎn)P關(guān)于圖形F的定向?qū)ΨQ點(diǎn).
(1)如圖,,,,
①點(diǎn)P關(guān)于點(diǎn)B的定向?qū)ΨQ點(diǎn)的坐標(biāo)是 ;
②在點(diǎn),,中,______是點(diǎn)P關(guān)于線段AB的定向?qū)ΨQ點(diǎn).
(2)直線分別與x軸,y軸交于點(diǎn)G,H,⊙M是以點(diǎn)為圓心,為半徑的圓.
①當(dāng)時,若⊙M上存在點(diǎn)K,使得它關(guān)于線段GH的定向?qū)ΨQ點(diǎn)在線段GH上,求的取值范圍;
②對于,當(dāng)時,若線段GH上存在點(diǎn)J,使得它關(guān)于⊙M的定向?qū)ΨQ點(diǎn)在⊙M上,直接寫出b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C,D是⊙O上兩點(diǎn),且,連接OC,BD,OD.
(1)求證:OC垂直平分BD;
(2)過點(diǎn)C作⊙O的切線交AB的延長線于點(diǎn)E,連接AD,CD.
①依題意補(bǔ)全圖形;
②若AD=6,,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一張矩形紙片ABCD沿著對角線BD向上折疊,頂點(diǎn)C落到點(diǎn)E處,BE交AD于點(diǎn)F.
(1)求證:△BDF是等腰三角形;
(2)若AB=6,AD=8,求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,大海中某燈塔P周圍10海里范圍內(nèi)有暗礁,一艘海輪在點(diǎn)A處觀察燈塔P在北偏東60°方向,該海輪向正東方向航行8海里到達(dá)點(diǎn)B處,這時觀察燈塔P恰好在北偏東45°方向.如果海輪繼續(xù)向正東方向航行,會有觸礁的危險嗎?試說明理由.(參考數(shù)據(jù):≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸上三個數(shù)所對應(yīng)的點(diǎn)分別為,已知,且的倒數(shù)是它本身,且滿足.
(1)求代數(shù)式的值:
(2)若將數(shù)軸折疊,使得點(diǎn)與點(diǎn)重合,則與點(diǎn)重合的點(diǎn)表示的數(shù)是_______;
(3)請在數(shù)軸上確定一點(diǎn),使得,則點(diǎn)表示的數(shù)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)是線段上與點(diǎn)不重合的一點(diǎn),且繞點(diǎn)逆時針旋轉(zhuǎn)角得到繞點(diǎn)順時針旋轉(zhuǎn)角得到,連接
(1)如圖1,當(dāng)時,求的度數(shù);
(2)如圖2,當(dāng)點(diǎn)在的延長線上時,求證: ;
(3)如圖3,過的中點(diǎn)作,過的中點(diǎn)作, 與交于點(diǎn),連接,若,求的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com