【題目】因式分解:aab______

【答案】a(1-b

【解析】試題分析:提公因式法分解因式分三步:第一步,找出公因式;;第二步,提公因式;;第三步,將多項(xiàng)式化成兩個因式乘積的形式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,AB∥CD∥GH,EG平分∠BEF,F(xiàn)G平分∠EFD

求證:∠EGF=90°

(1)把下列證明過程及理由補(bǔ)充完整.

(2 )請你用精煉準(zhǔn)確的文字將上述結(jié)論總結(jié)出來.

證明:∵HG∥AB(已知)

∴∠1=∠3 (

又∵HG∥CD(已知)

∴∠2=∠4(同理)

∵AB∥CD(已知)

∴∠BEF+ =180° (

又∵EG平分∠BEF(已知)

∴∠1=

又∵FG平分∠EFD(已知)

∴∠2=∠EFD (同理)

∴∠1+∠2= +

∴∠1+∠2=90°

∴∠3+∠4=90°

即∠EGF=90°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知3a-2的算術(shù)平方根是4,2a+b-2的算術(shù)平方根是3,求a、b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知⊙O的直徑50cm,弦ABCD,且AB40cm,CD48cm,求AB、CD之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在RtABC中,B=90°BC=2AB=8,點(diǎn)D,E分別是邊BC,AC的中點(diǎn),連接DE. EDC繞點(diǎn)C按順時針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為α.

1)問題發(fā)現(xiàn)

當(dāng)時,;

當(dāng)時,

2)拓展探究

試判斷:當(dāng)α360°時,的大小有無變化?請僅就圖2的情況給出證明.

3)問題解決

當(dāng)EDC旋轉(zhuǎn)至A、D、E三點(diǎn)共線時,直接寫出線段BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A﹣1,2)關(guān)于x軸對稱的點(diǎn)B的坐標(biāo)為

A. ﹣1,2B. 1,2C. 1﹣2D. ﹣1,﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以下列各組線段為邊,能組成三角形的是( )

A. 2cm, 3cm, 5cm B. 5cm, 6cm, 10cm C. 1cm, 1cm, 3cm D. 3cm, 4m, 9cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果(x﹣2)(x﹣3)=x2+px+q,那么p、q的值是( )
A.p=﹣5,q=6
B.p=1,q=﹣6
C.p=1,q=6
D.p=﹣1,q=6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線與坐標(biāo)軸交于A、B、C三點(diǎn),其中B(4,0)、C(﹣2,0),連接AB、AC,在第一象限內(nèi)的拋物線上有一動點(diǎn)D,過D作DEx軸,垂足為E,交AB于點(diǎn)F.

(1)求此拋物線的解析式,

(2)在DE上作點(diǎn)G,使G點(diǎn)與D點(diǎn)關(guān)于F點(diǎn)對稱,以G為圓心,GD為半徑作圓,當(dāng)G與其中一條坐標(biāo)軸相切時,求G點(diǎn)的橫坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案