如圖,在平面直角坐標(biāo)系中,點(diǎn)A(10,0),以O(shè)A為直徑在 第一象限內(nèi)作半圓C,點(diǎn)B是該半圓周上的一動點(diǎn),連接AB,并延長AB至點(diǎn)D,使DB=AB,連接OD交半圓C于點(diǎn)F,過點(diǎn)D作x軸垂線,分別交x軸于點(diǎn)E,點(diǎn)E為垂足.當(dāng)∠AOF=60°時(shí),弧BF的度數(shù)是    ;當(dāng)DE=8時(shí),線段AE的長是   
【答案】分析:連接OB,由垂直平分線的性質(zhì)得OD=OA=10,又DE=8,在Rt△ODE中,由勾股定理求OE,進(jìn)而得出AE的長.
解答:解:連接OB,F(xiàn)C,BC
∵OA是⊙C直徑,∴∠OBA=90°,
又∵AB=BD,
∴OB是AD的垂直平分線,
∴OD=OA=10,
∴∠BOA=∠DOB=30°,
∴∠BCA=∠FCB=60°,
∴弧BF的度數(shù)是60°,
在Rt△ODE中,
OE==,
∴AE=AO-OE=10-6=4,
故答案為:60°,4.
點(diǎn)評:此題考查了勾股定理的運(yùn)用,圓周角定理.關(guān)鍵是理解題意,根據(jù)基本條件以及圖形的性質(zhì)求解是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動,路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案