【題目】如圖,△ABC中,∠C=90°,CA=CB,D為AC上的一點(diǎn),AD=2CD,AE⊥AB交BD的延長(zhǎng)線(xiàn)于E,則 = .
【答案】
【解析】解:如圖,過(guò)D作DF⊥AB于G,DG∥BC交AB于G.
∵DG∥BC,AD=2CD,
∴ = =2,∠DGA=∠CBA,
∴AG=2GB.
∵△ABC中,∠C=90°,CA=CB,
∴∠CAB=∠CBA,
∴∠CAB=∠DGA.
在△AFD與△GFD中,
,
∴△AFD≌△GFD,
∴AF=GF,
∴AF=GF=GB,
∴ = .
∵DF∥AE,
∴ = = .
所以答案是 .
【考點(diǎn)精析】掌握等腰直角三角形和相似三角形的判定與性質(zhì)是解答本題的根本,需要知道等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個(gè)底角相等且等于45°;相似三角形的一切對(duì)應(yīng)線(xiàn)段(對(duì)應(yīng)高、對(duì)應(yīng)中線(xiàn)、對(duì)應(yīng)角平分線(xiàn)、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,點(diǎn)D,E分別是AB,BC上的點(diǎn),且滿(mǎn)足AC=DC=DE=BE=1,則tanA= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】山地自行車(chē)越來(lái)越受到中學(xué)生的喜愛(ài),各種品牌相繼投放市場(chǎng),某車(chē)行經(jīng)營(yíng)的A型車(chē)去年銷(xiāo)售總額為5萬(wàn)元,今年每輛銷(xiāo)售價(jià)比去年降低400元,若賣(mài)出的數(shù)量相同,銷(xiāo)售總額將比去年減少20%.
(1)今年A型車(chē)每輛售價(jià)多少元?(列方程解答)
(2)該車(chē)行計(jì)劃今年新進(jìn)一批A型車(chē)和B型車(chē)共60輛,A型車(chē)的進(jìn)貨價(jià)為每輛1100元,銷(xiāo)售價(jià)與(1)相同;B型車(chē)的進(jìn)貨價(jià)為每輛1400元,銷(xiāo)售價(jià)為每輛2000元,且B型車(chē)的進(jìn)貨數(shù)量不超過(guò)A型車(chē)數(shù)量的兩倍,應(yīng)如何進(jìn)貨才能使這批車(chē)獲利最多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)題意解答
(1)【閱讀發(fā)現(xiàn)】如圖①,在正方形ABCD的外側(cè),作兩個(gè)等邊三角形ABE和ADF,連結(jié)ED與FC交于點(diǎn)M,則圖中△ADE≌△DFC,可知ED=FC,求得∠DMC= .
(2)【拓展應(yīng)用】如圖②,在矩形ABCD(AB>BC)的外側(cè),作兩個(gè)等邊三角形ABE和ADF,連結(jié)ED與FC交于點(diǎn)M.
(i)求證:ED=FC.
(ii)若∠ADE=20°,求∠DMC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班學(xué)生分兩組參加某項(xiàng)活動(dòng),甲組有26人,乙組有32人,后來(lái)由于活動(dòng)需要,從甲組抽調(diào)了部分學(xué)生去乙組,結(jié)果乙組的人數(shù)是甲組人數(shù)的2倍還多1人.從甲組抽調(diào)了多少學(xué)生去乙組?
【答案】7個(gè)人
【解析】
試題設(shè)從甲組抽調(diào)了個(gè)學(xué)生去乙組,根據(jù)抽調(diào)后乙組的人數(shù)是甲組人數(shù)的2倍還多1人即可得出關(guān)于的一元一次方程,解之即可得出結(jié)論.
試題解析:設(shè)從甲組抽出人到乙組,
答:從甲組抽調(diào)了7名學(xué)生去乙組
【題型】解答題
【結(jié)束】
26
【題目】如圖,直線(xiàn)AB和CD交于點(diǎn)O,OE⊥AB,垂足為點(diǎn)O,OP平分∠EOD,∠AOD=144°.
(1)求∠AOC與∠COE的度數(shù);
(2)求∠BOP的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸的交點(diǎn)的橫坐標(biāo)分別為﹣1,3,則下列結(jié)論正確的個(gè)數(shù)有( ) ①ac<0;②2a+b=0;③4a+2b+c>0;④對(duì)于任意x均有ax2+bx≥a+b.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,∠MON=45°,OA1=1,作正方形A1B1C1A2 , 面積記作S1;再作第二個(gè)正方形A2B2C2A3 , 面積記作S2;繼續(xù)作第三個(gè)正方形A3B3C3A4 , 面積記作S3;點(diǎn)A1、A2、A3、A4…在射線(xiàn)ON上,點(diǎn)B1、B2、B3、B4…在射線(xiàn)OM上,…依此類(lèi)推,則第6個(gè)正方形的面積S6是( )
A.256
B.900
C.1024
D.4096
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在△ABC中,∠CAB=90°,AB=AC.
(1)如圖1,P,Q是BC邊上兩點(diǎn),AP=AQ,∠BAP=20°,求∠AQB的度數(shù);
(2)點(diǎn)P,Q是BC邊上兩動(dòng)點(diǎn)(不與B,C重合),點(diǎn)P在點(diǎn)Q左側(cè),且AP=AQ,點(diǎn)Q關(guān)于直線(xiàn)AC的對(duì)稱(chēng)點(diǎn)為M,連接AM,PM.
①依題意將圖2補(bǔ)全;
②小明通過(guò)觀(guān)察和實(shí)驗(yàn),提出猜想:在點(diǎn)P,Q運(yùn)動(dòng)的過(guò)程中,始終有PM=PA.他把這個(gè)猜想與同學(xué)們進(jìn)行交流,通過(guò)討論,形成以下證明猜想的思路:
(Ⅰ)要想證明PM=PA,只需證△APM為等腰直角三角形;
(Ⅱ)要想證明△APM為等腰直角三角形,只需證∠PAM=90°,PA=AM;
…
請(qǐng)參考上面的思路,幫助小明證明PM=PA.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某面粉加工廠(chǎng)加工的面粉,用每袋可裝10g面粉的袋子裝了200袋經(jīng)過(guò)稱(chēng)重,質(zhì)量超過(guò)標(biāo)準(zhǔn)質(zhì)量10kg的用正數(shù)表示,質(zhì)量低于標(biāo)準(zhǔn)質(zhì)量10kg的用負(fù)數(shù)表示,結(jié)果記錄如下
與標(biāo)準(zhǔn)質(zhì)量的偏差(kg) | ﹣1.5 | ﹣1 | ﹣0.5 | 0 | 0.5 | 1 | 2 |
袋數(shù)(袋) | 40 | 30 | 10 | 25 | 40 | 20 | 35 |
(1)求這批面粉的總質(zhì)量;
(2)如果100kg小麥加工80kg面粉,那么這批面粉是由多少千克小麥加工的?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com