【題目】【探索新知】
已知平面上有n(n為大于或等于2的正整數(shù))個點A1 , A2 , A3 , …An , 從第1個點A1開始沿直線滑動到另一個點,且同時滿足以下三個條件:①每次滑動的距離都盡可能最大;②n次滑動將每個點全部到達(dá)一次;③滑動n次后必須回到第1個點A1 , 我們稱此滑動為“完美運動”,且稱所有點為“完美運動”的滑動點,記完成n個點的“完美運動”的路程之和為Sn
(1)如圖1,滑動點是邊長為a的等邊三角形三個頂點,此時S3=

(2)如圖2,滑動點是邊長為a,對角線(線段A1A2、A2A4)長為b的正方形四個頂點,此時S4=
【深入研究】
現(xiàn)有n個點恰好在同一直線上,相鄰兩點距離都為1,

(3)如圖3,當(dāng)n=3時,直線上的點分別為A1、A2、A3
為了完成“完美運動”,滑動的步驟給出如圖4所示的兩種方法:
方法1:A1→A3→A2→A1 , 方法2:A1→A2→A3→A1
①其中正確的方法為
A.方法1 B.方法2 C.方法1和方法2
②完成此“完美運動”的S3=


(4)當(dāng)n分別取4,5時,對應(yīng)的S4= , S5=
(5)若直線上有n個點,請用含n的代數(shù)式表示Sn

【答案】
(1)3a
(2)2a+2b
(3)A;4
(4)8;12
(5)

解:n 為奇數(shù)時:Sn=n﹣1+n﹣2+…+1+ ﹣1= ;

n 為偶數(shù)時:Sn=n﹣1+n﹣2+…+1+ =


【解析】解:(1)如圖1,∵滑動點是邊長為a的等邊三角形三個頂點,
∴S3=3a,
所以答案是:3a;(2)如圖2,∵滑動點是邊長為a,對角線長為b的正方形四個頂點,
∴S4=2a+2b,
所以答案是:2a+2b;(3)如圖4,①∵方法2 是錯的,不滿足第①個條件,每一次距離要是最大的,
∴方法1正確,
故選A;②如圖3,S3=2+1+1=4,
所以答案是:4;(4)根據(jù)條件:①每次滑動的距離都盡可能最大;②n次滑動將每個點全部到達(dá)一次;③滑動n次后必須回到第1個點A1 , 可得:
S4=3+2+1+2=8,
S5=4+3+2+1+2=12,
所以答案是:8,12;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( 。
A.一個游戲的中獎率是1%,則做100次這樣的游戲一定會中獎
B.一組數(shù)據(jù)6,8,7,9,7,10的眾數(shù)和中位數(shù)都是7
C.為了解全國中學(xué)生的心理健康情況,應(yīng)該采用全面調(diào)查的方式
D.若甲乙兩人六次跳遠(yuǎn)成績的方差S=0.1,S=0.03,則乙的成績更穩(wěn)定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果二次函數(shù)y=(m﹣2)x2+3x+m2﹣4的圖象經(jīng)過原點,那么m=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P是⊙O外一點,PA切⊙O于點A,AB是⊙O的直徑,連接OP,過點BBCOP交⊙O于點C,連接ACOP于點D

1)求證:PC是⊙O的切線;

2)若PD=cm,AC=8cm,求圖中陰影部分的面積;

3)在(2)的條件下,若點E是弧AB的中點,連接CE,求CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正比例函數(shù)y=kx.

(1)若函數(shù)圖象經(jīng)過第二、四象限,則k的范圍是什么?

(2)點(1,-2)在它的圖象上,求它的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算
(1)2+(﹣3)+(﹣6)+8
(2)1﹣(﹣4)÷22×
(3)( + )÷(﹣
(4)﹣12×8﹣8×( 3+4÷

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ACE是以□ABCD的對角線AC為邊的等邊三角形,點C與點E關(guān)于x軸對稱.若E點的坐標(biāo)是(7,-3 ),則D點的坐標(biāo)是 ( )

A.(4,0)
B.( ,0)
C.(5,0)
D.( ,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將兩塊全等的三角板如圖1擺放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.

(1)將圖1中△A1B1C繞點C順時針旋轉(zhuǎn)45°得圖2,點P1是A1C與AB的交點,點Q是A1B1與BC的交點,求證:CP1=CQ;

(2)在圖2中,若AP1=a,則CQ等于多少?

(3)將圖2中△A1B1C繞點C順時針旋轉(zhuǎn)到△A2B2C(如圖3),點P2是A2C與AP1的交點.當(dāng)旋轉(zhuǎn)角為多少度時,有△AP1C∽△CP1P2?這時線段CP1與P1P2之間存在一個怎樣的數(shù)量關(guān)系?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請你求出 + 的最小值為

查看答案和解析>>

同步練習(xí)冊答案