如圖(1),已知正方形ABCD在直線MN的上方,BC在直線MN上,E是線段BC上一點,以AE為邊在直線MN的上方作正方形AEFG

連結(jié)GD,求證△ADG≌△ABE;
如圖(2),將圖(1)中正方形ABCD改為矩形ABCD,AB=1,BC=2,E是線段BC上一動點(不含端點B,C ),以AE為邊在直線MN的上方作矩形AEFG,使頂點G恰好落在射線CD上.判斷當(dāng)E由B向C運動時,∠FCN的大小是否保持不變,若∠FCN的大小不變,求tan∠FCN的值;若∠FCN的大小發(fā)生改變,請舉例說明.

(1)證明略
(2)當(dāng)點E由B向C運動時,∠FCN的大小總保持不變,tan∠FCN=2解析:

解:(1)∵四邊形ABCD和四邊形AEFG是正方形
∴AB=AD,AE=AG,∠BAD=∠EAG=90º
∴∠BAE+∠EAD=∠DAG+∠EAD
∴∠BAE=∠DAG
∴△ BAE≌△DAG       …………4分
(2)當(dāng)點E由B向C運動時,∠FCN的大小總保持不變,…………1分
理由是:作FH⊥MN于H
由已知可得∠EAG=∠BAD=∠AEF=90º
結(jié)合(1)(2)得∠FEH=∠BAE=∠DAG
又∵G在射線CD上
∠GDA=∠EHF=∠EBA=90º
∴△EFH≌△GAD,△EFH∽△ABE
∴EH=AD=BC=b,∴CH=BE,
∴==
∴在Rt△FEH中,tan∠FCN===2 
∴當(dāng)點E由B向C運動時,∠FCN的大小總保持不變,tan∠FCN=2 …………5分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖(1),已知,矩形ABCD的邊AD=3,對角線長為5,將矩形ABCD置于直角坐標(biāo)系內(nèi),點C與原點O重合,且反比例函數(shù)的圖象的一個分支位于第一象限.
①求圖(1)中,點A的坐標(biāo)是多少?
②若矩形ABCD從圖(1)的位置開始沿x軸的正方向移動,每秒移動1個單位,1秒后點A剛好落在反比例函數(shù)的圖象上,如圖(2),求反比例函數(shù)的表達(dá)式.
③矩形ABCD繼續(xù)向x軸的正方向移動,AB、AD與反比例函數(shù)圖象分別交于P、Q兩點,如圖(3),設(shè)移動總時間為t(1<t<5),分別寫出△PBC的面積S1、△QDC的面積S2與t的函數(shù)關(guān)系式,并求當(dāng)t為何值時,S2=
107
S1?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖甲所示,已知拋物線經(jīng)過原點O和x軸上另一點E,頂點M的坐標(biāo)為(2,4);
(1)求拋物線函數(shù)關(guān)系式;
(2)矩形ABCD的頂點A與點O重合,AD、AB分別在x軸、y軸上,且AD=2,AB=3,將矩形ABCD以每秒1個單位長度的速度從圖甲所示的位置沿x軸的正方向勻速平移,同時一動點P也以相同的速度從點A出發(fā)向B勻速移動,設(shè)它們運動的時間為t秒(0≤t≤3),直線AB與該拋物線的交點為N(如圖乙所示).
①當(dāng)t=
52
時,判斷點P是否在直線ME上,并說明理由;
②設(shè)以P、N、C、D為頂點的多邊形面積為S,試問S是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由;
③現(xiàn)將甲圖中的拋物線向右平移m(m>0)個單位,所得拋物線與x軸交于G、F兩點,與原拋物線交于點Q,設(shè)△FGQ的面積為S,求S關(guān)于m的函關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖(1),已知,矩形ABCD的邊AD=3,對角線長為5,將矩形ABCD置于直角坐標(biāo)系內(nèi),點C與原點O重合,且反比例函數(shù)的圖象的一個分支位于第一象限.
①求圖(1)中,點A的坐標(biāo)是多少?
②若矩形ABCD從圖(1)的位置開始沿x軸的正方向移動,每秒移動1個單位,1秒后點A剛好落在反比例函數(shù)的圖象上,如圖(2),求反比例函數(shù)的表達(dá)式.
③矩形ABCD繼續(xù)向x軸的正方向移動,AB、AD與反比例函數(shù)圖象分別交于P、Q兩點,如圖(3),設(shè)移動總時間為t(1<t<5),分別寫出△PBC的面積S1、△QDC的面積S2與t的函數(shù)關(guān)系式,并求當(dāng)t為何值時,S2=數(shù)學(xué)公式S1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年貴州省畢節(jié)地區(qū)太來中學(xué)九年級(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

如圖(1),已知,矩形ABCD的邊AD=3,對角線長為5,將矩形ABCD置于直角坐標(biāo)系內(nèi),點C與原點O重合,且反比例函數(shù)的圖象的一個分支位于第一象限.
①求圖(1)中,點A的坐標(biāo)是多少?
②若矩形ABCD從圖(1)的位置開始沿x軸的正方向移動,每秒移動1個單位,1秒后點A剛好落在反比例函數(shù)的圖象上,如圖(2),求反比例函數(shù)的表達(dá)式.
③矩形ABCD繼續(xù)向x軸的正方向移動,AB、AD與反比例函數(shù)圖象分別交于P、Q兩點,如圖(3),設(shè)移動總時間為t(1<t<5),分別寫出△PBC的面積S1、△QDC的面積S2與t的函數(shù)關(guān)系式,并求當(dāng)t為何值時,S2=S1?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省衢州市江山二中九年級(上)第一次質(zhì)量檢測數(shù)學(xué)試卷(解析版) 題型:解答題

如圖甲所示,已知拋物線經(jīng)過原點O和x軸上另一點E,頂點M的坐標(biāo)為(2,4);
(1)求拋物線函數(shù)關(guān)系式;
(2)矩形ABCD的頂點A與點O重合,AD、AB分別在x軸、y軸上,且AD=2,AB=3,將矩形ABCD以每秒1個單位長度的速度從圖甲所示的位置沿x軸的正方向勻速平移,同時一動點P也以相同的速度從點A出發(fā)向B勻速移動,設(shè)它們運動的時間為t秒(0≤t≤3),直線AB與該拋物線的交點為N(如圖乙所示).
①當(dāng)時,判斷點P是否在直線ME上,并說明理由;
②設(shè)以P、N、C、D為頂點的多邊形面積為S,試問S是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由;
③現(xiàn)將甲圖中的拋物線向右平移m(m>0)個單位,所得拋物線與x軸交于G、F兩點,與原拋物線交于點Q,設(shè)△FGQ的面積為S,求S關(guān)于m的函關(guān)系式.

查看答案和解析>>

同步練習(xí)冊答案