【題目】如圖,已知線段,直線相交于點(diǎn),,利用尺規(guī),按下列要求作圖(不寫作法,保留作圖痕跡):

1)在射線,上分別作線段,使它們分別與線段相等,在射線,上分別作線段,使它們分別與線段相等;

2)分別連接線段,,你得到了一個(gè)怎樣的圖形?

3)點(diǎn)與點(diǎn)之間的所有連線中,哪條最短?請(qǐng)說明理由.

【答案】1)見解析;(2)四邊形EGFH是菱形;(3GH最短,因?yàn)閮牲c(diǎn)之間線段最短.

【解析】

1)利用圓規(guī)分別在OC,OD上截取OE=OF=a,在OAOB上分別截取線段OG=OH=b;
2)根據(jù)對(duì)角線互相垂直且平分的四邊形是菱形可得四邊形EGFH是菱形;
3)根據(jù)兩點(diǎn)之間線段最短可得GH最短.

解:(1)如圖所示:

2)如圖所示:

四邊形EGFH是菱形;

3GH最短,因?yàn)閮牲c(diǎn)之間線段最短.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】武漢某文化旅游公司為了在軍運(yùn)會(huì)期間更好地宣傳武漢,在工廠定制了一批具有濃郁的武漢特色的商品.為了了解市場(chǎng)情況,該公司向市場(chǎng)投放,型商品共件進(jìn)行試銷,型商品成本價(jià)/件,商品成本價(jià)/件,其中型商品的件數(shù)不大于型的件數(shù),且不小于件,已知型商品的售價(jià)為元/件,型商品的售價(jià)為元/件,且全部售出.設(shè)投放型商品件,該公司銷售這批商品的利潤(rùn)元.

1)直接寫出之間的函數(shù)關(guān)系式:_______

2)為了使這批商品的利潤(rùn)最大,該公司應(yīng)該向市場(chǎng)投放多少件型商品?最大利潤(rùn)是多少?

3)該公司決定在試銷活動(dòng)中每售出一件型商品,就從一件型商品的利潤(rùn)中捐獻(xiàn)慈善資金元,當(dāng)該公司售完這件商品并捐獻(xiàn)資金后獲得的最大收益為元時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠1=∠2DEBC,ABBC,求證:∠A=∠3.

證明:∵ DEBC,ABBC(已知)

∴∠DEC=ABC=90°( )

DEAB_________ ___

∴∠2=____ (__________ ___________)

1 (____________ _________)

又∵∠1=∠2(_____________________)

∴∠A=∠3(_____________________)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形中,,上一點(diǎn),于點(diǎn),連結(jié)

(1)求證:;

(2)若,試說明四邊形是菱形;

(3)在(2)的條件下,試確定點(diǎn)的位置,使得,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=-x+my=nx+4nn≠0)的交點(diǎn)的橫坐標(biāo)為-2.則下列結(jié)論:①m0,n0;②直線y=nx+4n一定經(jīng)過點(diǎn)(-4,0);③mn滿足m=2n-2;④當(dāng)x-2時(shí),nx+4n-x+m,其中正確結(jié)論的個(gè)數(shù)是( 。

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正方形OA1B1C1,B1A2B2C2,B2A3B3C3的頂點(diǎn)B1,B2B3,x軸上,頂點(diǎn)C1,C2,C3在直線y=kx+b上,若正方形OA1B1C1,B1A2B2C2的對(duì)角線OB1=2,B1B2=3,則點(diǎn)C3的縱坐標(biāo)是______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=6cm,BC=8cm.如果點(diǎn)E由點(diǎn)B出發(fā)沿BC方向向點(diǎn)C勻速運(yùn)動(dòng),同時(shí)點(diǎn)F由點(diǎn)D出發(fā)沿DA方向向點(diǎn)A勻速運(yùn)動(dòng),它們的速度分別為2cm/s和1cm/s.FQ⊥BC,分別交AC、BC于點(diǎn)P和Q,設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<4).

(1)連結(jié)EF、DQ,若四邊形EQDF為平行四邊形,求t的值;

(2)連結(jié)EP,設(shè)△EPC的面積為ycm2,求y與t的函數(shù)關(guān)系式,并求y的最大值;

(3)若△EPQ與△ADC相似,請(qǐng)直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系xOy中,直線y=x+1與雙曲線的一個(gè)交點(diǎn)為Pm,6).

(1)求k的值;

(2)M(2,a),Nn,b)分別是該雙曲線上的兩點(diǎn),直接寫出當(dāng)ab時(shí),n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:解分式不等式<0

解:根據(jù)實(shí)數(shù)的除法法則:同號(hào)兩數(shù)相除得正數(shù),異號(hào)兩數(shù)相除得負(fù)數(shù),因此,原不等式可轉(zhuǎn)化為:

或②

解①得:無解,解②得:﹣2<x<1

所以原不等式的解集是﹣2<x<1

請(qǐng)仿照上述方法解下列分式不等式:(1)>0;(2)<0.

查看答案和解析>>

同步練習(xí)冊(cè)答案