解:(1)∵∠1+∠2+∠CDP+∠CEP=360°,∠C+∠α+∠CDP+∠CEP=360°,
∴∠1+∠2=∠C+∠α,
∵∠C=90°,∠α=50°,
∴∠1+∠2=140°;
故答案為:140°;
(2)由(1)得出:
∠α+∠C=∠1+∠2,
∴∠1+∠2=90°+α
故答案為:∠1+∠2=90°+α;
(3)∠1=90°+∠2+α,
理由:∵∠2+∠α=∠DME,∠DME+∠C=∠1,
∴∠1=∠C+∠2+α=90°+∠2+α,
(4)∵∠PFD=∠EFC,
∴180°-∠PFD=180°-∠EFC,
∴∠α+180°-∠1=∠C+180°-∠2,
∴∠2=90°+∠1-α.
故答案為:∠2=90°+∠1-α.
分析:(1)根據(jù)四邊形內角和定理以及鄰補角的定義得出∠1+∠2=∠C+∠α,進而得出即可;
(2)利用(1)中所求得出答案即可;
(3)利用三角外角的性質得出∠1=∠C+∠2+α=90°+∠2+α;
(4)利用三角形內角和定理以及鄰補角的性質可得出.
點評:本題考查了三角形內角和定理和外角的性質、對頂角相等的性質,熟練利用三角形外角的性質是解題的關鍵.