如圖,四邊形ABCD是等腰梯形,AD∥BC,M、N分別為AD、BC的中點,E、F分別是BM、CM的中點,
(1)求證:四邊形MENF是菱形;
(2)如果將已知中的“四邊形ABCD是等腰梯形”改為“四邊形ABCD是平行四邊形”,其余條件不變,那么四邊形MENF還是菱形嗎?答:______.(填“是”或“否”)

解:(1)證明:由三角形中位線定理可得EN∥CM且EN=CM,F(xiàn)N∥BM且FN=BM,
所以四邊形MENF是平行四邊形,
再由SAS可得△ABM≌△DCM,所以BM=CM,
所以EN=FN,
所以四邊形MENF是菱形;

(2)否.當(dāng)四邊形ABCD是平行四邊形時,同樣由(1)可得,四邊形MENF是平行四邊形,
因為菱形的對角線互相垂直,等腰梯形可滿足菱形這一性質(zhì),而平行四邊形的對角線不存在這一性質(zhì),
所以條件改變后,四邊形MENF的對角線不垂直,
四邊形MENF不再是菱形.
分析:(1)M、N分別為AD、BC的中點,E、F分別是BM、CM的中點,因為題中涉及中點,可利用中位線定理進行求解.
(2)等腰梯形有一個對角線互相垂直的性質(zhì),而平行四邊形則不具備,而菱形的對角線也是互相垂直的,所以條件改變后,四邊形不再是菱形.
點評:熟練掌握菱形的性質(zhì)及判定定理,掌握等腰梯形的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對角線AC與BD互相垂直平分于點O,設(shè)AC=2a,BD=2b,請推導(dǎo)這個四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對角線、周長、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對角線AC、BD交于點P,過點P作直線交AD于點E,交BC于點F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長線上的一點,且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD是正方形,點E是BC的中點,∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點E是BC的中點”改為“E是BC上任意一點”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案