【題目】解下列方程:
(1) .
(2)x2+4x﹣1=0.
【答案】
(1)解:去分母得:2x﹣4=3x﹣9,
解得:x=6,
經(jīng)檢驗(yàn)x=6是分式方程的解
(2)解:移項(xiàng)得:x2+4x=1,
配方得:x2+4x+4=5,即(x+2)2=5,
開(kāi)方得:x+2=± ,
解得:x=﹣2± .
【解析】(1)根據(jù)解分式方程時(shí)必須要檢驗(yàn)方程的解是原分式方程的解,還是增根,去分母得:2x﹣4=3x﹣9,解得x=6,經(jīng)檢驗(yàn)x=6是分式方程的解;(2)移項(xiàng)得:x2+4x=1,配方得:x2+4x+4=5,即(x+2)2=5,解得:x=﹣2± .
【考點(diǎn)精析】利用配方法和去分母法對(duì)題目進(jìn)行判斷即可得到答案,需要熟知左未右已先分離,二系化“1”是其次.一系折半再平方,兩邊同加沒(méi)問(wèn)題.左邊分解右合并,直接開(kāi)方去解題;先約后乘公分母,整式方程轉(zhuǎn)化出.特殊情況可換元,去掉分母是出路.求得解后要驗(yàn)根,原留增舍別含糊.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)定義一種新運(yùn)算“*”,規(guī)定a*b=ab+a﹣b,如1*3=1×3+1﹣3,則﹣2*5等于( )
A. 17B. 15C. ﹣17D. ﹣15
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一段筆直的公路AC長(zhǎng)20千米,途中有一處休息點(diǎn)B,AB長(zhǎng)15千米,甲、乙兩名長(zhǎng)跑愛(ài)好者同時(shí)從點(diǎn)A出發(fā),甲以15千米/時(shí)的速度勻速跑至點(diǎn)B,原地休息半小時(shí)后,再以10千米/時(shí)的速度勻速跑至終點(diǎn)C;乙以12千米/時(shí)的速度勻速跑至終點(diǎn)C,下列選項(xiàng)中,能正確反映甲、乙兩人出發(fā)后2小時(shí)內(nèi)運(yùn)動(dòng)路程y(千米)與時(shí)間x(小時(shí))函數(shù)關(guān)系的圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是小強(qiáng)洗漱時(shí)的側(cè)面示意圖,洗漱臺(tái)(矩形)靠墻擺放,高,寬,小強(qiáng)身高,下半身,洗漱時(shí)下半身與地面成(),身體前傾成(),腳與洗漱臺(tái)距離(點(diǎn),,,在同一直線上).
(1)此時(shí)小強(qiáng)頭部點(diǎn)與地面相距多少?
(2)小強(qiáng)希望他的頭部恰好在洗漱盆的中點(diǎn)的正上方,他應(yīng)向前或后退多少?
(,,,結(jié)果精確到)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在ABCD中,過(guò)點(diǎn)D作DE⊥AB于點(diǎn)E,點(diǎn)F在CD上,CF=AE,連接BF,AF.
(1)求證:四邊形BFDE是矩形;
(2)若AD=DF,求證:AF平分∠BAD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=2x+3與y軸交于點(diǎn)A,直線y=kx﹣1與y軸交于點(diǎn)B,與直線y=2x+3交于點(diǎn)C(﹣1,n).
(1)求n、k的值;
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P是矩形ABCD的邊AD上的一動(dòng)點(diǎn),AB=6,BC=8,則點(diǎn)P到矩形的兩條對(duì)角線AC和BD的距離之和是( )
A.4.8
B.5
C.6
D.7.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,BC>AB,∠BAD的平分線AF與BD,BC分別交于點(diǎn)E,F(xiàn),點(diǎn)O是BD的中點(diǎn),直線OK∥AF,交AD于點(diǎn)K,交BC于點(diǎn)G.
(1)求證:△DOK≌△BOG;
(2)探究線段AB、AK、BG三者之間的關(guān)系,并證明你的結(jié)論;
(3)若KD=KG,BC=2 ﹣1,求KD的長(zhǎng)度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com