【題目】如圖,把△ABC 繞點(diǎn) A 順時(shí)針旋轉(zhuǎn) n 度(0<n<180)后得到△ADE,并使點(diǎn) D 落在 AC 的延長(zhǎng)線上.

(1)若∠B=17°,∠E=55°,求 n;

(2)F BC 的中點(diǎn),G DE 的中點(diǎn),連 AG、AF、FG,求證:△AFG 為等腰三角形.

【答案】(1)108°(2)證明見(jiàn)解析

【解析】

(1)根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠ACB=∠E=55°,根據(jù)三角形的內(nèi)角和得到∠

BAC=180°﹣55°﹣17°=108°,于是得到結(jié)論;

(2)根據(jù)旋轉(zhuǎn)的性質(zhì)得到 AB=AD BC=DE,∠B=∠D,根據(jù)線段中點(diǎn)的定義得到 BF= BC DG=DE,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論.

(1)∵△ADE 是由△ABC 旋轉(zhuǎn)而來(lái),

∴∠ACB=∠E=55°,

又∵∠B=17°,

∴∠BAC=180°﹣55°﹣17°= 108°,

∵D 落在 AC 延長(zhǎng)線上,

∴∠BAC 即為旋轉(zhuǎn)角,

∴n=108°;

(2)證明:∵△ADE 是由△ABC 旋轉(zhuǎn)而來(lái),

∴AB=AD BC=DE,∠B=∠D,

∵F、G 分別是 BC、DE 的中點(diǎn),

∴BF= BC DG= DE,

∴BF=DG,

在△ABF 與△ADG 中

∴△ABF≌△ADG(SAS),

∴AF=AG,

∴△ADF 是等腰三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,利用一面院墻,用籬笆圍成一個(gè)外形為矩形的花圃,花圃的面積為S平方米,平行于院墻的一邊長(zhǎng)為x.

1)若院墻可利用最大長(zhǎng)度為10米,籬笆長(zhǎng)為24米,花圃中間用一道籬笆間隔成兩個(gè)小矩形,求Sx之間的函數(shù)關(guān)系;

2)在(1)的條件下,若圍成的花圃面積為45平方米,求AB的長(zhǎng);

3)在(1)的條件下,能否圍成面積比45平方米更大的花圃?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=-x2+2x+3.

(1)求函數(shù)圖像的頂點(diǎn)坐標(biāo),并畫(huà)出這個(gè)函數(shù)的圖像;

(2)根據(jù)圖像,直接寫(xiě)出:

①當(dāng)函數(shù)值y為正數(shù)時(shí),自變量x的取值范圍;

②當(dāng)-2<x<2時(shí),函數(shù)值y的取值范圍;

③若經(jīng)過(guò)點(diǎn)(0,k)且與x軸平行的直線l與y=-x2+2x+3的圖像有公共點(diǎn),求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)O為正方形ABCD的中心,AD1,BE平分∠DBCDC于點(diǎn)E,延長(zhǎng)BC到點(diǎn)F,使BDBF,連結(jié)DFBE的延長(zhǎng)線于點(diǎn)H,連結(jié)OHDC于點(diǎn)G,連結(jié)HC.則以下四個(gè)結(jié)論中:OHBF;②OGGH21;③GH;④∠CHF2EBC;⑤CH2HEHB.正確結(jié)論的個(gè)數(shù)為( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(閱讀資料)

同學(xué)們,我們學(xué)過(guò)用配方法解一元二次方程,也可用配方法求代數(shù)式的最值.

1)求4x2+16x+19的最小值.

解:4x2+16x+194x2+16x+16+34x+22+3

因(x+22大于等于0,所以4x2+16x+19大于等于3,即4x2+16x+19的最小值是3.此時(shí),x=﹣2

2)求﹣m2m+2的最大值

解:﹣m2m+2=﹣(m2+m+2=﹣

大于等于0,所以﹣小于等于0,所以﹣

小于等于,即﹣m2m+2的最大值是,此時(shí),m=﹣

(探索發(fā)現(xiàn))

如圖①,是一張直角三角形紙片,∠B90°,AB8BC6,小明想從中剪出一個(gè)以∠B為內(nèi)角且面積最大的矩形,經(jīng)過(guò)多次操作發(fā)現(xiàn),當(dāng)沿著中位線DE、EF剪下時(shí),所得的矩形的面積最大.下面給出了未寫(xiě)完的證明,請(qǐng)你閱讀下面的證明并寫(xiě)出余下的證明部分,并求出矩形的最大面積與原三角形面積的比值.

解:在AC上任取點(diǎn)E,作EDBC,EFAB,得到矩形BDEF.設(shè)EFx

易證△AEF∽△ACB,則,,,

請(qǐng)你寫(xiě)出剩余部分

(拓展應(yīng)用)

如圖②,在△ABC中,BCa,BC邊上的高ADh,矩形PQMN的頂點(diǎn)P、N分別在邊AB、AC上,頂點(diǎn)Q、M在邊BC上,則矩形PQMN面積的最大值為   .(用含a,h的代數(shù)式表示)

(靈活應(yīng)用)

如圖③,有一塊缺角矩形ABCDE,AB32,BC40,AE20,CD16,小明從中剪出了一個(gè)面積最大的矩形(∠B為所剪出矩形的內(nèi)角),該矩形的面積為   .(直接寫(xiě)出答案)

(實(shí)際應(yīng)用)

如圖④,現(xiàn)有一塊四邊形的木板余料ABCD,經(jīng)測(cè)量AB70cm,BC108cm,CD76cm,且∠B=∠C60°,木匠徐師傅從這塊余料中裁出了頂點(diǎn)M、N在邊BC上且面積最大的矩形PQMN,該矩形的面積為   .(直接寫(xiě)出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,使點(diǎn)的對(duì)應(yīng)點(diǎn)恰好落在邊上,點(diǎn)的對(duì)應(yīng)點(diǎn)為,連接.下列結(jié)論一定正確的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖1,E是正方形ABCDAB上的一點(diǎn),連接BD、DE,將∠BDE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,旋轉(zhuǎn)后角的兩邊分別與射線BC交于點(diǎn)F和點(diǎn)G

線段DBDG的數(shù)量關(guān)系是   ;

寫(xiě)出線段BEBFDB之間的數(shù)量關(guān)系.

2)當(dāng)四邊形ABCD為菱形,∠ADC60°,點(diǎn)E是菱形ABCDAB所在直線上的一點(diǎn),連接BD、DE,將∠BDE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)120°,旋轉(zhuǎn)后角的兩邊分別與射線BC交于點(diǎn)F和點(diǎn)G

如圖2,點(diǎn)E在線段AB上時(shí),請(qǐng)?zhí)骄烤段BE、BFBD之間的數(shù)量關(guān)系,寫(xiě)出結(jié)論并給出證明;

如圖3,點(diǎn)E在線段AB的延長(zhǎng)線上時(shí),DE交射線BC于點(diǎn)M,若BE1,AB2,直接寫(xiě)出線段GM的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程x2+(2m+1)x+m20有兩個(gè)根x1,x2.

(1)m的取值范圍.

(2)當(dāng)x12+x1x20時(shí),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將一個(gè)小球從斜坡的點(diǎn)O處拋出,小球的拋出路線可以用二次函數(shù)y=4x﹣x2刻畫(huà),斜坡可以用一次函數(shù)y=x刻畫(huà),下列結(jié)論錯(cuò)誤的是( 。

A. 當(dāng)小球拋出高度達(dá)到7.5m時(shí),小球水平距O點(diǎn)水平距離為3m

B. 小球距O點(diǎn)水平距離超過(guò)4米呈下降趨勢(shì)

C. 小球落地點(diǎn)距O點(diǎn)水平距離為7

D. 斜坡的坡度為1:2

查看答案和解析>>

同步練習(xí)冊(cè)答案