【題目】如圖,在平面直角坐標(biāo)系中,P是第一象限角平分線上的一點(diǎn),且P點(diǎn)的橫坐標(biāo)為3.把一塊三角板的直角頂點(diǎn)固定在點(diǎn)P處,將此三角板繞點(diǎn)P旋轉(zhuǎn),在旋轉(zhuǎn)的過程中設(shè)一直角邊與x軸交于點(diǎn)E,另一直角邊與y軸交于點(diǎn)F,若△POE為等腰三角形,則點(diǎn)F的坐標(biāo)為_____.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解決問題:
一輛貨車從超市出發(fā),向東走了3千米到達(dá)小彬家,繼續(xù)走2.5千米到達(dá)小穎家,然后向西走了10千米到達(dá)小明家,最后回到超市.
(1)以超市為原點(diǎn),以向東的方向?yàn)檎较,?/span>1個(gè)單位長度表示1千米,在數(shù)軸上表示出小明家,小彬家,小穎家的位置.
(2)小明家距小彬家多遠(yuǎn)?
(3)貨車一共行駛了多少千米?
(4)貨車每千米耗油0.2升,這次共耗油多少升?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖一,∠ACB=90°,點(diǎn)D在AC上,DE⊥AB垂足為E,交BC的延長線于F,DE=EB,EG=EB,
(1)求證:AG=DF;
(2)過點(diǎn)G作GH⊥AD,垂足為H,與DE的延長線交于點(diǎn)M,如圖二 找出圖中與AB相等的線段,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個(gè)人做游戲:在一個(gè)不透明的口袋中裝有4張相同的紙牌,它們分別標(biāo)有數(shù)字1,2,3,4.從中隨機(jī)摸出一張紙牌然后放回,再隨機(jī)摸出一張紙牌,若兩次摸出的紙牌上數(shù)字之和是3的倍數(shù),則甲勝;否則乙勝.這個(gè)游戲?qū)﹄p方公平嗎?請列表格或畫樹狀圖說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y1=ax+b(a,b為常數(shù),且a≠0)與反比例函數(shù)y2= (m為常數(shù),且m≠0)的圖象交于點(diǎn)A(﹣2,1)、B(1,n)
(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)連接OA、OB,求△AOB的面積;
(3)直接寫出當(dāng)y1<y2時(shí),自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠E=50°,∠BAC=50°,∠D=110°,求∠ABD的度數(shù).
請完善解答過程,并在括號內(nèi)填寫相應(yīng)的理論依據(jù).
解:∵∠E=50°,∠BAC=50°,(已知)
∴∠E= (等量代換)
∴ ∥ .( )
∴∠ABD+∠D=180°.( )
∴∠D=110°,(已知)
∴∠ABD=70°.(等式的性質(zhì))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級舉行英語演講比賽,購買A,B兩種筆記本作為獎(jiǎng)品,這兩種筆記本的單價(jià)分別是12元和8元.根據(jù)比賽設(shè)獎(jiǎng)情況,需購買筆記本共30本,并且所購買A筆記本的數(shù)量要不多于B筆記本數(shù)量的,但又不少于B筆記本數(shù)量,設(shè)買A筆記本n本,買兩種筆記本的總費(fèi)為w元.
(1)寫出w(元)關(guān)于n(本)的函數(shù)關(guān)系式,并求出自變量n的取值范圍;
(2)購買這兩種筆記本各多少時(shí),費(fèi)用最少?最少的費(fèi)用是多少元?
(3)商店為了促銷,決定僅對A種類型的筆記本每本讓利a元銷售,B種類型筆記本售價(jià)不變.問購買這兩種筆記本各多少本時(shí)花費(fèi)最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,斜坡AB的坡度為1:2.4,長度為26m,在坡頂B所在的平臺上有一座電視塔CD,已知在A處測得塔頂D的仰角為45°,在B處測得塔頂D的仰角為73°,求電視塔CD的高度. (參考數(shù)值:sin73°≈ ,cos73°≈0. ,tan73°≈ )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在四邊形ABCD中,點(diǎn)E、F分別是AB、CD的中點(diǎn),過點(diǎn)E作AB的垂線,過點(diǎn)F作CD的垂線,兩垂線交于點(diǎn)G,連接AG、BG、CG、DG,且∠AGD=∠BGC.
(1)求證:AD=BC;
(2)求證:△AGD∽△EGF;
(3)如圖2 , 若AD、BC所在直線互相垂直,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com