【題目】某校機(jī)器人興趣小組在如圖①所示的矩形場地上開展訓(xùn)練.機(jī)器人從點(diǎn)出發(fā),在矩形邊上沿著的方向勻速移動,到達(dá)點(diǎn)時停止移動.已知機(jī)器人的速度為1個單位長度,移動至拐角處調(diào)整方向需要(即在、處拐彎時分別用時).設(shè)機(jī)器人所用時間為時,其所在位置用點(diǎn)表示,到對角線的距離(即垂線段的長)為個單位長度,其中的函數(shù)圖象如圖②所示.

1)求、的長;

2)如圖②,點(diǎn)、分別在線段、上,線段平行于橫軸,的橫坐標(biāo)分別為、,設(shè)機(jī)器人用了到達(dá)點(diǎn)處,用了到達(dá)點(diǎn)處(如圖①).若,求、的值.

【答案】1,BC=6;(2.

【解析】

1)作,垂足為.依題意可知.中,,可求得.再根據(jù)三角函數(shù)的定義即可得到結(jié)論;

2)如圖,連接P1P2.過P1,P2分別作BD的垂線,垂足為Q1,Q2.則P1Q1P2Q2.根據(jù)平行線的性質(zhì)得到d1=d2,得到P1Q1=P2Q2.根據(jù)平行線分線段成比例定理得到.設(shè)M,N的橫坐標(biāo)分別為t1t2,于是可得到結(jié)論.

1)如圖③,作,垂足為.

依題意知,.

中,

.

,

,

.

2)如圖③,連結(jié).分別作的垂線,垂足分別為

.

∵在圖②中,線段平行于橫軸,

,即.

.

,即.

又∵,

.

設(shè)、的橫坐標(biāo)分別為、

,

,

.

故答案為:(1BC=6;(2,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近年來,共享單車服務(wù)的推出(如圖1),極大的方便了城市公民綠色出行,圖2是某品牌某型號單車的車架新投放時的示意圖(車輪半徑約為30cm),其中BC∥直線l,BCE=71°,CE=54cm.

(1)求單車車座E到地面的高度;(結(jié)果精確到1cm)

(2)根據(jù)經(jīng)驗(yàn),當(dāng)車座ECB的距離調(diào)整至等于人體胯高(腿長)的0.85時,坐騎比較舒適.小明的胯高為70cm,現(xiàn)將車座E調(diào)整至座椅舒適高度位置E′,求EE′的長.(結(jié)果精確到0.1cm)

(參考數(shù)據(jù):sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AC,BD交于點(diǎn)O,且AC=12cm,BD=16cm.點(diǎn)P從點(diǎn)B出發(fā),沿BA方向勻速運(yùn)動,速度為lcm/s;同時,直線EF從點(diǎn)D出發(fā),沿DB方向勻速運(yùn)動,速度為lcm/s,EFBD,且與AD,BD,CD分別交于點(diǎn)E,Q.F,當(dāng)直線EF停止運(yùn)動時,點(diǎn)P也停止運(yùn)動.連接PF,設(shè)運(yùn)動時間為t(s)(0<t<8).解答下列問題:

(1)求菱形ABCD的面積;

(2)當(dāng)t=1時,求QF長;

(3)是否存在某一時刻t,使四邊形APFD是平行四邊形?若存在,求出t值,若不存在,請說明理由;

(4)設(shè)DEF的面積為s(cm2),試用含t的代數(shù)式表示S,并求t為何值時,DEF的面積與BPC的面積相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,E為CD的中點(diǎn),AE的垂直平分線分別交AD,BC及AB的延長線于點(diǎn)F,G,H,連接HE,HC,OD,連接CO并延長交AD于點(diǎn)M.則下列結(jié)論中:

①FG=2AO;②OD∥HE;③;④2OE2=AHDE;⑤GO+BH=HC

正確結(jié)論的個數(shù)有( 。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校在一次社會實(shí)踐活動中,組織學(xué)生參觀了虎園、烈士陵園、博物館和植物園,為了解本次社會實(shí)踐活動的效果,學(xué)校隨機(jī)抽取了部分學(xué)生,對“最喜歡的景點(diǎn)”進(jìn)行了問卷調(diào)查,并根據(jù)統(tǒng)計結(jié)果繪制了如下不完整的統(tǒng)計圖.其中最喜歡烈士陵園的學(xué)生人數(shù)與最喜歡博物館的學(xué)生人數(shù)之比為2:1,請結(jié)合統(tǒng)計圖解答下列問題:

(1)本次活動抽查了   名學(xué)生;

(2)請補(bǔ)全條形統(tǒng)計圖;

(3)在扇形統(tǒng)計圖中,最喜歡植物園的學(xué)生人數(shù)所對應(yīng)扇形的圓心角是   度;

(4)該校此次參加社會實(shí)踐活動的學(xué)生有720人,請求出最喜歡烈士陵園的人數(shù)約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】頂點(diǎn)都在格點(diǎn)上的的三角形叫做格點(diǎn)三角形,如圖,在的方格紙中,是格點(diǎn)三角形.

1)在圖中,以點(diǎn)為對稱中心,作出一個與成中心對稱的格點(diǎn)三角形,并在題后橫線上直接寫出的位置關(guān)系:

2)在圖中,以所在的直線為對稱軸,作出一個與成軸對稱的格點(diǎn)三角形,并在題后橫線上直接寫出是什么形狀的特殊三角形:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的角平分線,分別是的高,連接.下列結(jié)論:①垂直平分;②垂直平分;③平分;④當(dāng)時,,其中不正確的結(jié)論的個數(shù)為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ACDE是證明勾股定理時用到的一個圖形,ab、cRtABCRtBED邊長,易知AE=c,這時我們把關(guān)于x的形如ax+cx+b=0的一元二次方程稱為“勾系一元二次方程”.

請解決下列問題

寫出一個“勾系一元二次方程”;

求證關(guān)于x的“勾系一元二次方程”ax+cx+b=0必有實(shí)數(shù)根

x=1是“勾系一元二次方程”ax+cx+b=0的一個根,且四邊形ACDE的周長是ABC面積.

查看答案和解析>>

同步練習(xí)冊答案