【題目】如圖,在5×5的網(wǎng)格中,橫、縱坐標均為整點的數(shù)叫做格點,例如(0,1)、B(2,1)、C(3,3)都是格點,現(xiàn)僅用無刻度的直尺在網(wǎng)格中做如下操作:
(1)直接寫出點A關于點B旋轉(zhuǎn)180°后對應點M的坐標 ;
(2)畫出線段BE,使BE⊥AC,其中E是格點,并寫出點E的坐標 ;
(3)找格點F,使∠EAF=∠CAB,畫出∠EAF,并寫出點F的坐標 .
科目:初中數(shù)學 來源: 題型:
【題目】如圖,為⊙的內(nèi)接三角形,為⊙的直徑,在線段上取點(不與端點重合),作,分別交、圓周于、,連接,已知.
(1)求證:為⊙的切線;
(2)已知,填空:
①當__________時,四邊形是菱形;
②若,當__________時,為等腰直角三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,拋物線y=﹣ax2+2ax+c與x軸相交于A(﹣1,0)、B兩點(A點在B點左側(cè)),與y軸相交于點C(0,3),點D是拋物線的頂點.
(1)如圖1,求拋物線的解析式;
(2)如圖1,點F(0,b)在y軸上,連接AF,點Q是線段AF上的一個動點,P是第一象限拋物線上的一個動點,當b=﹣時,求四邊形CQBP面積的最大值與點P的坐標;
(3)如圖2,點C1與點C關于拋物線對稱軸對稱.將拋物線y沿直線AD平移,平移后的拋物線記為y1,y1的頂點為D1,將拋物線y1沿x軸翻折,翻折后的拋物線記為y2,y2的頂點為D2.在(2)的條件下,點P平移后的對應點為P1,在平移過程中,是否存在以P1D2為腰的等腰△C1P1D2,若存在請直接寫出點D2的橫坐標,若不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O中,直徑AB⊥CD,垂足為E,點M在OC上,AM的延長線交⊙O于點G,交過C的直線于F,∠1=∠2,連結(jié)CB與DG交于點N.
(1)求證:CF是⊙O的切線;
(2)求證:△ACM∽△DCN;
(3)若點M是CO的中點,⊙O的半徑為4,cos∠BOC=,求BN的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=a,∠ABC=60°,過點A作AE⊥BC,垂足為E,AF⊥CD,垂足為F.
(1)連接EF,用等式表示線段EF與EC的數(shù)量關系,并說明理由;
(2)連接BF,過點A作AK⊥BF,垂足為K,求BK的長(用含a的代數(shù)式表示);
(3)延長線段CB到G,延長線段DC到H,且BG=CH,連接AG、GH、AH.
①判斷△AGH的形狀,并說明理由;
②若a=2,S△ADH=(3+),求sin∠GAB的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD為菱形,以AD為直徑作⊙O交AB于點F,連接DB交⊙O于點H,E是BC上的一點,且BE=BF,連接DE.
(1)求證:△DAF≌△DCE.
(2)求證:DE是⊙O的切線.
(3)若BF=2,DH=,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將正整數(shù)按如圖所示的規(guī)律排列下去,若有序數(shù)對(n,m)表示第n排,從左到右第m個數(shù),如(4,3)表示8,已知1+2+3+…+n=,則表示2020的有序數(shù)對是( ).
A.(64,4)B.(65,4)C.(64,61)D.(65,61)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=15,BC=17,將矩形ABCD繞點D按順時針方向旋轉(zhuǎn)得到矩形DEFG,點A落在矩形ABCD的邊BC上,連接CG,則CG的長是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com