【題目】已知ABO直徑,ACO的切線,BCO于點D(如圖1).

(1)若AB=2,∠B=30°,求CD的長;

(2) 取AC的中點E,連結(jié)D、E(如圖2),求證:DEO相切.

【答案】(1);(2)見解析

【解析】分析:連接AD ,根據(jù)AC是⊙O的切線,AB是⊙O的直徑,得到∠CAB=ADB=90°,根據(jù)∠B=30°,解直角三角形求得的長度.

連接OD,AD.根據(jù)DE=CE=EA,EDA=EAD. 根據(jù)OD=OA,得到

ODA=DAO,得到∠EDA+ODA=EAD+DAO.得到∠EDO=90°即可.

詳解:(1)如圖,連接AD ,

AC是⊙O的切線,AB是⊙O的直徑,

∴∠CAB=ADB=90°,

ΔCABCAD均是直角三角形.

∴∠CAD=B=30°.

RtΔCAB中,AC=ABtan30°=

∴在RtΔCAD中,CD=ACsin30°=

(2)如圖,連接OD,AD.

AC是⊙O的切線,AB是⊙O的直徑,

∴∠CAB=ADB=ADC=90°,

又∵EAC中點,

DE=CE=EA, 

∴∠EDA=EAD.

OD=OA,

∴∠ODA=DAO,

∴∠EDA+ODA=EAD+DAO.

即:∠EDO=EAO=90°. 

又點D在⊙O上,因此DE與⊙O相切.

點睛:考查解直角三角形,圓周角定理,切線的判定與性質(zhì)等,屬于圓的綜合題,比較基礎(chǔ).注意切線的證明方法,是高頻考點.

型】解答
結(jié)束】
21

【題目】課外活動時間,甲、乙、丙、丁4名同學(xué)相約進行羽毛球比賽.

(1)如果將4名同學(xué)隨機分成兩組進行對打,求恰好選中甲乙兩人對打的概率;

(2)如果確定由丁擔任裁判,用“手心、手背”的方法在另三人中競選兩人進行比賽.競選規(guī)則是:三人同時伸出“手心”或“手背”中的一種手勢,如果恰好只有兩人伸出的手勢相同,那么這兩人上場,否則重新競選.這三人伸出“手心”或“手背”都是隨機的,求一次競選就能確定甲、乙進行比賽的概率.

【答案】(1);(2)

【解析】分析:列舉出將4名同學(xué)隨機分成兩組進行對打所有可能的結(jié)果,找出甲乙兩人對打的情況數(shù),根據(jù)概率公式計算即可.

畫樹狀圖寫出所有的情況,根據(jù)概率的求法計算概率.

詳解:(1)甲同學(xué)能和另一個同學(xué)對打的情況有三種:

(甲、乙),(甲、丙),(甲、。

則恰好選中甲乙兩人對打的概率為:

(2)樹狀圖如下:

一共有8種等可能的情況,其中能確定甲乙比賽的可能為(手心、手心、手背)、(手背、手背、手心)兩種情況,因此,一次競選就能確定甲、乙進行比賽的概率為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電器超市銷售A、B兩種不同型號的電風(fēng)扇,每種型號電風(fēng)扇的購買單價分別為每臺310元,460元.

(1)若某單位購買A,B兩種型號的電風(fēng)扇共50臺,且恰好支出20000元,求A,B兩種型號電風(fēng)扇各購買多少臺?

(2)若購買A,B兩種型號的電風(fēng)扇共50臺,且支出不超過18000元,求A種型號電風(fēng)扇至少要購買多少臺?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,MNEF,C為兩直線之間一點.

(1)如圖1,若MAC與EBC的平分線相交于點D,若ACB=100°,求ADB的度數(shù).

(2)如圖2,若CAM與CBE的平分線相交于點D,ACB與ADB有何數(shù)量關(guān)系?并證明你的結(jié)論.

(3)如圖3,若CAM的平分線與CBF的平分線所在的直線相交于點D,請直接寫出ACB與ADB之間的數(shù)量關(guān)系:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2017年11月9日,微信團隊在成都騰訊全球合作伙伴大會上發(fā)布消息稱:2017年全球平均日登錄微信用戶數(shù)9.02億,較去年增長17%.按此增長速度,預(yù)計2019年全球平均日登錄微信用戶數(shù)為( )

A. 9.02×(17%)2 B. 9.02×(1+17%)億 C. 9.02×(1+17%)2 D. 9.02×(1+2×17%)億

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知線段AB4.8cmC是線段AB的中點,D是線段CB的中點,點EAB上,且CEAC,則DE的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下圖是由邊長為1個單位長度的小正方形組成的網(wǎng)格,線段AB的端點在格點上.

(1)請建立適當?shù)钠矫嬷苯亲鴺讼?/span>xOy,使得A點的坐標為(-3,-1),在此坐標系下,B點的坐標為________________;

(2)將線段BA繞點B逆時針旋轉(zhuǎn)90°得線段BC,畫出BC;在第(1)題的坐標系下,C點的坐標為__________________

(3)在第(1)題的坐標系下,二次函數(shù)y=ax2+bx+c(a≠0)的圖象過O、BC三點,則此函數(shù)圖象的對稱軸方程是________________.

【答案】 (-1,2) (2,0) x=1

【解析】分析:根據(jù)點的坐標建立坐標系,即可寫出點的坐標.

畫出點旋轉(zhuǎn)后的對應(yīng)點連接,寫出點的坐標.

用待定系數(shù)法求出函數(shù)解析式,即可求出對稱軸方程.

詳解:(1)建立坐標系如圖,

B點的坐標為

(2)線段BC如圖,C點的坐標為

(3)把點代入二次函數(shù),得

解得:

二次函數(shù)解析為:

對稱軸方程為:

故對稱軸方程是

點睛:考查圖形與坐標;旋轉(zhuǎn)、對稱變換;待定系數(shù)法求二次函數(shù)解析式,二次函數(shù)的圖象與性質(zhì).熟練掌握各個知識點是解題的關(guān)鍵.

型】解答
結(jié)束】
18

【題目】特殊兩位數(shù)乘法的速算——如果兩個兩位數(shù)的十位數(shù)字相同,個位數(shù)字相加為10,那么能立說出這兩個兩位數(shù)的乘積.如果這兩個兩位數(shù)分別寫作ABAC(即十位數(shù)字為A,個位數(shù)字分別為B、C,B+C=10,A>3),那么它們的乘積是一個4位數(shù),前兩位數(shù)字是A(A+1)的乘積,后兩位數(shù)字就是BC的乘積.

如:47×43=2021,61×69=4209.

(1)請你直接寫出83×87的值;

(2)設(shè)這兩個兩位數(shù)的十位數(shù)字為x(x>3),個位數(shù)字分別為yz(y+z=10),通過計算驗證這兩個兩位數(shù)的乘積為100x(x+1)+yz.

(3)99991×99999=___________________(直接填結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ΔABC中,AB=AC,點E,F在邊BC上,BE=CF,點DAF的延長線上,AD=AC

1)求證:ΔABEΔACF;

2)若∠BAE=30°,則∠ADC= (直接寫答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸上點表示的有理數(shù)分別為-10、5,點是射線上的一個動點(不與點、重合),點是線段靠近點的三等分點,點是線段靠近點的三等分點.

1)若點表示的有理數(shù)是0,那么的長為______;若點表示的有理數(shù)是1,那么的長為______.

2)點在射線上運動(不與點、重合)的過程中,的長是否發(fā)生改變?若不改變,請求出的長;若改變,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象關(guān)于y軸對稱且交y軸負半軸于點C,與x軸交于點A、B,已知AB=6OC=4,C的半徑為,P為⊙C上一動點.

1)求出二次函數(shù)的解析式;

2)是否存在點P,使得PBC為直角三角形?若存在,求出點P的坐標;若不存在,請說明理由;

3)連接PB,若EPB的中點,連接OE,則OE的最大值是多少?

查看答案和解析>>

同步練習(xí)冊答案